اثر تراکم خاک و آماده سازی (پرایمینگ) بذر بر شاخص‌های رشد و مقدار پرولین گیاهچه لوبیا قرمز

نوع مقاله : مقاله پژوهشی

نویسندگان

1 دانشجوی دکتری، دانشگاه لرستان

2 دانشیار گروه تولید و ژنتیک گیاهی، دانشگاه لرستان

3 دانشیار گروه مکانیک ماشین‌های کشاورزی، دانشگاه لرستان

4 دانشیار گروه خاکشناسی، دانشگاه لرستان

چکیده

تراکم زیاد خاک بر میزان و سرعت ظهور گیاهچه به ویژه در گیاهان اپی­جیل و همچنین درصد گیاهچه مستقر شده در شرایط مزرعه اثرات نامطلوب دارد. لذا برای بررسی راههای مقابله با این پدیده در گیاه لوبیا این آزمایش در طی سال‌های 1396 و 1397 در آزمایشگاه بذر و گلخانه گروه زراعت و اصلاح نباتات دانشکده کشاورزی، دانشگاه لرستان بر روی لوبیا قرمز رقم گلی، طراحی و اجرا شد. متغیرهای مورد بررسی عبارت بودند از آماده سازی بذر در هفت سطح (شاهد (آماده سازی نشده)، آماده سازی آبی (هیدروپرایمینگ)، آماده سازی با محلول­های جیبرلیک اسید[1](GA50 ppm، GA100 ppm)، سالسیلیک اسید[2](SA50 ppm، SA100 ppm)، و ترکیبی ازGA50 ppm + SA50 ppm)) و تراکم خاک در پنج سطح (شاهد یا خاک دست نخورده)، 5%، 10%، %15و 20% افزایش تراکم در مقایسه با شاهد) . نتایج نشان داد که تراکم خاک در حدبهینه (10-5%) تأثیر مثبت و بیش از آن تاثیر منفی بر رشد گیاهچه داشت. تیمار آماده سازی هورمونی بذر بر رشد اولیه گیاهچه تأثیر معنی‌داری داشت. آماده سازی باعث شد که طول ریشه و تعداد انشعابات آن بهبود یابد. تراکم شدید خاک، طول ریشه را کاهش داد. بیشترین طول ریشه (58/40 سانتی‌متر) در تیمار GA50 ppm + SA50 ppm)) و عدمتراکم (خاک دست نخورده) بود و بیشترین تعداد انشعابات ریشه 8 عدد در تیمار A50 ppm + SA50 ppm و تراکم 20 % خاک بود. تیمار آماده سازی بذر بر پرولین اثر معنی‌داری داشت. کمترین میزان پرولین (µg.g-1 FW 1/85) در تیمار شاهد (بدون آماده سازی) در تراکم خاک 10%، و بیشترین میزان آن(µg.g-1 FW 6/199) در تیمار GA50 ppm + SA50 ppm و عدم تراکم (خاک دست نخورده) مشاهده شد. اعمال تراکم خاک به میزان 5% باعث بهبود شرایط گیاهچه شد ولی افزایش تراکم خاک به میزان 15% و بیشتر باعث کاهش رشد ریشه (13/9 سانتی‌متر) و اندام هوایی شد. این موضوع ممکن است بواسطه کاهش تهویه خاک و در نتیجه پایین آمدن توان گیاهچه در جذب آب و عناصر غذایی باشد.



2. Gibbrellic acid


3. Salicylic acid

کلیدواژه‌ها


عنوان مقاله [English]

Effect of Soil Compaction and Seed Priming on Growth Indices and Proline Content of Kidney Bean Seedling

نویسندگان [English]

  • Hadis Nasrollahi 1
  • Hamid Reza Eisvand 2
  • Feizollah Shahbazi 3
  • Mohammad Feizian 4
1 PhD student, Lorestan University
2 Associate Professor, Dept. of Plant Production and Genetics, Faculty of Agriculture, Lorestan University
3 Associate Professor, Dept. of Agricultural Machinery, Faculty of Agriculture, Lorestan University
4 Associate Professor, Dept. of Soil Science, Faculty of Agriculture, Lorestan University
چکیده [English]

Heavy soil compaction and crusting has adverse effects on the rate and speed of seedling emergence, as well as percent of established seedling, particularly in dicotyledonous epigeal plants. Therefore, the aim of this study was to evaluate the ways of coping with this phenomenon in kidney bean. The experiment was carried out during the years 2017 and 2018 in the Seed Laboratory and Greenhouse of Lorestan University, Iran. Factors studied were seed priming (control, hydroprming, GA50 ppm, GA100 ppm, SA50 ppm, SA100 ppm, and GA50 ppm+SA50 ppm) and soil compaction (intact, 5%, 10%, 15%, and 20% more compaction in relation to intact). The results showed that low soil compaction (5-10%) had positive effect on seedling growth, while, more compaction had adverse effect. Seed priming had a significant effect on seedling growth indices. Priming improved root length and number of root branches. Sever soil compaction decreased root length. The maximum root length (40.58 cm) was observed in priming with GA50 ppm+SA50 ppm and no soil compaction (intact soil). The greatest number of root branches was observed in GA50 ppm+SA50 ppm and 20% soil compaction. Seed priming had significant effects on proline. Minimum proline content (85.1 µg.g-1 FW) was observed in not-primed and 10% soil compaction, however, its maximum  (199.6 µg.g-1 FW) was recorded in GA50 ppm+SA50 ppm priming and no soil compaction (intact soil). In general, weak soil compaction (5%) improved seedling growth, but increasing soil compaction by 15% or more decreased root (9.13 cm) and shoot growth. It seems that soil compaction reduces water and mineral uptake, hence reducing seedling performance.

کلیدواژه‌ها [English]

  • Germination
  • Seedling performance
  • Dicotyledon
  • Seed priming
  • Root growth
  1. ابراهیمی کولایی، ح.، نوروزی، ع.، حسنی، م.، بختیاری، م. ر.، پدرام، ع و ح. نوشاد.1389.تأثیر فشردگی خاک بر برخی صفات کمی و کیفی چغندرقند. مرکز تحقیقات کشاورزی و منابع طبیعی همدان. مجله چغندرقند. 26(2):205-214.  
  2. امیریانی دولیسگانی، م.، عیسوند، ح. ر.، فیضیان، م.، و د.گودرزی. 1397. بررسی اثر پیش‌تیمار بذر بر پارامترهای جوانه زنی، هدایت الکتریکی، نشت پتاسیم و برخی صفات گیاهچه حاصل از بذر پیر شده لوبیا چیتی رقم خمین (Phaseolus vulgaris L. Var. Khomeyn). .علوم و تحقیقات بذر ایران. 5 (3):101-89.
  3. داددرسی، و.، ابوطالبیان، م. ع.، احمدوند، گ.، موسوی، س.، و م. سیدی. 1391. تأثیر پرایمینگ بذر در مزرعه و دور آبیاری بر شاخص های رشد دو رقم ذرت. دو فصلنامه دانشور علوم زراعی.  ۳ (۷) :۶۷-۸۸.
  4. عیسوند، ح. ر.، آذرنیا، م.، نظریان فیروزآبادی، ف و ر. شرفی. 1390. بررسی اثر جیبرلین و اسید آبسزیک بر سبز شدن و برخی خصوصیات فیزیولوژیکی بذر و گیاهچه نخود در شرایط دیم و آبی. مجله علوم گیاهان زراعی ایران .42(4): 789-797.
  5. سمیعی، ز.، عیسوند، ح. ر.، گودرزی، د. و ن.اکبری.1393. بررسی اثر عوامل مؤثر در فرآیند هیدروپرایمینگ بذر ( دما و زمان) بر کیفیت فیزیولوژیک بذر و گیاهچه گندم دیم رقم کوهدشت تحت تنش خشکی. پایان‌نامه کارشناسی ارشد. دانشکده کشاورزی، دانشگاه لرستان.
  6. سیدی، م.، بوربور، ا. ،دادرسی،و.، صادقی، ف و ج.حمزئی.1391.تاثیر هیدروپرایمینگ بر بهبود جوانه‌زنی گلرنگ تحت تنش خشکی، مجله دانش زراعت. 5 (8): 14-1.
  7. سرمدنیا، غ و ع.کوچکی .1369. فیزیولوژی گیاهان زراعی. ترجمه. انتشارات جهاد دانشگاهی مشهد. چاپ دوم.ص 467 .
  8. عبدالرحمانی،ب.1390. پرایمینگ غذایی بذر روشی برای بهبود بنیه بذر و رشو و نمو گیاهان زراعی. همایش ملی دستاوردهای نوین در زراعت .دانشگاه آزاد اسلامی واحد شهر قدس.
  9. Abdolrahmani, B., K., Ghassemi-Golezani, M., Valizadeh, and V. Feizi Asl. 2007. Seed priming and seedling establishment of barley (Hordium voulgare L.). Journal of Food, Agriculture and Environment. 5: 179-184.
  10. Ansari, O., H.R., Choghazardi, F., Sharif Zadeh, and H. Nazarli. 2013. Seed reserve utilization and seedling growth of treated seeds of Mountain Rye (Seecale montanum) as affected by drought stress, Cercetări Agronomice în Moldova. 2 (150): 43-48.
  11. Ashraf, M, and M.R. Foolad. 2007. Roles of glycinebetaine and proline in improving plant abiotic stress resistance. Environmental Experiment of Botany. 59: 206–216.
  12. Bates, I.S., R.P .,Waldern, and I.D. Tear. 1973. Rapid determination of free proline for water stress studies. Plant and Soil. 39:205-207.
  13. Beebe, S.E., I.M., Rao, and J.A. Acosta-Gallegos. 2013. Phenotyping commonbeans for adaptationto drought. Frontiers in Physiology. 4:35 https://doi.org/10.3389/fphys.2013.00035.
  14. Chimungu, J.G., W.L., Kenneth, and J.P. Lynch. 2015. Root anatomical phenes predict root penetration ability and biomechanical properties inmaize (Zea mays). Journal of  Experimental Botany. 66:3151–3162.
  15. Descalzi, C., O., Balocchi, I., López, P., Kemp, and J. Dörner. 2018. Different soilstructure and water conditions affect the growing response of Lolium perenne L. and Bromus valdivianus Phil. growing alone or in mixture. Journal of Soil Science Plant Nutrition. 18:617–635.
  16. Ebadi, A., and S. Gollojeh Kamel. 2009. Effects of seed priming on growth and yield of chickpea under saline soil. Recent Research in Science and Technology. 16: 2076-5061.
  17. Ebrahimi, B., F., Goshchi, and M. Naseri. 2012. Effect of hydropriming on a few characteristics of (Echium amoenum L.) seeds. Internathional Journal of Agriculture and Crop Sciences. 24: 1840-1843.
  18. Eisvand, H., M., Alizadeh, and A. Fekri. 2010. How hormonal priming of aged and nonaged seeds of bromegrass affects seedling physiological characters. Journal of New Seeds. 11(1): 52-64.
  19. Eraslan, F., A., Inal, and D.J. Pilbeam. 2008. Interactive effects of salicylic acid and silicon on oxidative damage and antioxidant activity in spinach (Spinacia oleracea L. cv. Matador) grown under boron toxicity and salinity. Plant Growth Regulation. 55: 207-219.
  20. Farooq, M., S.M.A., Basra, A., Wahid, and M.B. Khan. 2006. Rice seed invigoration by hormonal and vitamin priming. Seed Science and Technology. 34:775-780.
  21. Foti, R., K., Abureni, A.,Tigere, J., Gotosa, and J. Gere. 2008. Seedling and stablishment in arid and semiarid zones. Journal of Arid Environments. 72: 1127-1130.
  22. Galal, A. 2012. Improving effect of salicylic acid on the multipurpostree Ziziphusspina-christi (L.) Willd Tissue Culture. American Journal of Plant Sciences. 3(7): 947-952.
  23. Gardner, F. P., R. B. Pearce, and R. L. Mitchell. 1985. Physiology of crop plants. Ames, IA: Iowa State University Press.
  24. Gemtos, T.A, and T. Lellis. 1999. Plant growth of cotton and suger beet. Journal of Agriculture and Engineering Research. 66(2):121-134.1999.
  25. Ghanbari, M., E.M., Modares sanavi, E., Mokhtasi bidgoli, and P. Talebi siahsaran. 2018. Effect of hydropriming and aging of bean seed under salinity stress. Iranian Journal of Seed Research. 4(2): 37-55.
  26. Gharib, F.A, and A.Z. Hegazi. 2010. Salicylic acid ameliorates germination, seedling growth, phytohormone and enzymes activity in bean (Phaseolus vulgaris L.) under cold stress. Journal of American Science. 6(10):675-683.
  27. Grzesiak, M.T. 2009. Impact of soil compaction on root architecture, leaf water status, gas exchange and growth of maize and triticale seedlings. Plant Root. 3: 10-16.
  28. Heidari, J., U., Alizadeh, and A. Fazeli. 2019. The effect of seed pretreatment and foliar application of salicylic acid on some physiological characteristics and yield of mungbean under drought strees. Conditions Journal of Crop Production Research. 26(2):141-127.
  29. Jalilian, J., R., Khalilzadeh, and E. Kanpaye. 2014. Improving of barley seedling growth by seed priming under water deficit strees. Journal of Strees Physiology and Biochemistry. 10 (2): 1-10.2014.
  30. Kanjosky, B.L., J., McPherson, and B.E. Ellis. 1997. Preactivating wounding response in tobacco prior to high‐level ozone exposure prevents necrotic injury. Plant Journal. 11:203-212.
  31. Kaur, G., S., Kumar, H.,  Nayyar, and H.D. Upadhyaya. 2005. Cold stress injury during the pod- fi lling phase in chickpea (Cicer arietinum L.): effects on quantitative and qualitative components of seeds. Journal Agronomy Crop Science. 194:457–464.
  32. KaviKishor, P.B., R.N., Sangam, P., Amrutha, K.R., Sri Laxmi, and K. Naidu. 2005. Regulation of proline biosynthesis, degradation, uptake and transport in higher plants: Its implications in plant growth and abiotic stress tolerance. Current Science. 88(3): 424- 438.
  33. Keikhah, M., M., Nori, and E. Keshtegar. 2016. Effect of salicylic acid and and gibberellin on yield and yield components of mungbean (Vigna radiata). Iranian Journal of Pulses Research. 7(2): 138-151.
  34. Khalilian, A., C.E., Hood, J.H., Palmer, T.H., Garner, and G.R. Bathke. 1991. Soil compaction and crop response to wheat/soybean inter seeding. Transactions of the American Society of Agricultural Engineers. 34(6):2299-2303.
  35. McKenzie, B.M., C.E., Mullins, J.M., Tisdall, and A.G. Bengough. 2013. Root-soilfriction: quantification provides evidence for measurable benefits for manipulation of root tip traits. Plant, Cell and Environment. 36:1085–1092.
  36. Michael, R.N., Y.U., Bofu, A., Brendan, W., Lanatius, A., Doronila, and T.S. Samuel. 2019. The effect of substrate compaction on plant water use and the implications for phytocap design specifications. Ecological engineering. 127: 195-203.
  37. Moullart, J. 1998. Factors influencing soil and subsoil compaction and impact of compaction on yield of different plants. Proceedings of the first workshop of the concerted action on subsoil compaction. DLO-Staring Centre, Wageningen, the Netherlands, May 28-30, Pp: 145-154.
  38. Ouzounidou, G,  and I. Ilias. 2005. Hormone induced protection of sunflower photosynthetic apparatus against copper toxicity. Biologia Plantarum. 49:223- 228.
  39. Pavlista, A.D, and J.M. Blumental. 2000. Potatoes in nutrient management of agronomy crops in Nebraska. P 151-156. In: R.B. Ferguson and K.M. Dee Groot (Eds.), Publication Nebraska University Cooperative Extension (EC00-155), Lincol.
  40. Pourazar, K, and B. Mirshekari. 2015. Invigoration of lentil (lens culinaris L.) seeds by hormonal priming whit kinetin and giberellik acid. ARPN Journal of Agricultural and Biological Science. 10(8): 324-329.
  41. Raifa, A.H., F.A., Amal, A., Heba, A.E.A., AboBakr and M.R. El-Sherbiny. 2012. Grain-priming and foliar pretreatment enhanced stress defense in wheat (Triticum aestivum var. Gimaza 9) plants cultivated in drought land. Australian Journal of Crop Science. 6(1): 121-129.
  42. Salehi, V., A., Farzianfirouzi, and M. Mesgarbashi. 2014. Effect of soil moisture and compaction on morphological characteristics and yield components of cowpea in greenhouse conditions. Second National Conference on Sustinable Agriculture and Natural Resources.18-26.
  43. Sharma, M.K, and S. Bandana. 2003. Effect of seed hardening with distilled water and nitrate salts on germination percentage, seedling emergence and post emergence attriutes of plant growth of wheat (Triticum aestivum L.). Physiology and Moleular Biology of Plants. 8: 11-17.
  44. Silva, S.R., Silva, I.R., Barros, N.F., and  M.E. Sa. 2011. Effect of compaction on microbial activity and carbon and nitrogen transformations in two oxisols with different mineralogy. Revista Brasileira de Ciência Solo. 35(4):1141-1149.
  45. Tan, X., S., Chang, and R. Kabzems. 2008. Soil compaction and forest floor reduced microbial biomass and enzyme activities in a boreal aspen forest soil. Biology and Fertility of Soils. 44: 471–479.
  46. Turkan, I. 2011. Plant responses to drought and salinity stress, Development in a post- Genomic era. Advances in Botanical Research. 593p.
  47. Wang, M.,  F., Shen, and G. Huan. 2019. Effects of soil compactions on plant growth, nutrient absorption, and root respiration in soyabean seedling. Enviormental Science and Pollution. 1:1-11.