اثرات بلندمدت بیوچار حاصل از برگ خرما بر تخلخل و پایداری ساختمان خاک لوم رسی شنی

نوع مقاله : مقاله پژوهشی

نویسندگان

1 دانش‌آموخته کارشناسی ارشد گروه علوم خاک دانشکده کشاورزی، دانشگاه شهرکرد

2 استادیار گروه علوم خاک دانشکده کشاورزی، دانشگاه شهرکرد

3 دانشجوی دکتری گروه علوم خاک دانشکده کشاورزی، دانشگاه شهرکرد

چکیده

بیوچار در خاک روشی جایگزین برای افزایش کربن خاک است و در طولانی‌مدت، سبب بهبود ویژگی­های فیزیکی خاک می­شود. این پژوهش باهدف بررسی تأثیر طولانی­مدت بیوچار حاصل از برگ خرما بر انواع تخلخل خاک (تهویه‌ای، موئین و کل) و پایداری ساختمان خاک لوم رسی شنی انجام شد. آزمایش­ به‌صورت فاکتوریل در قالب طرح کاملاً تصادفی با دو عامل شامل مقدار بیوچار برگ خرما در چهار سطح (صفرB0، 5/0%=B0.5، %1=B1و 2%=B2وزنی)و دیگری مدت زمان پس از کاربرد بیوچار در چهار سطح (یکT1، سهT3، شش T6و نه ماه T9) با سه تکرار به‌صورت گلدانی انجام شد. نتایج نشان داد اثر بیوچار برگ خرما بر تخلخل تهویه­ای و مویین در سطح یک درصد معنی­دار شد. همچنین، اثر مدت زمان پس از کاربرد بیوچار بر جرم مخصوص ظاهری و تخلخل کل خاک در سطح یک درصد معنی­دار بود. اثر مقدار بیوچار، مدت زمان پس از کاربرد بیوچار و اثرات متقابل مقدار و مدت زمان پس از کاربرد بیوچار بر میانگین وزنی قطر خاکدانه­ها نیز در سطح یک درصد معنی­دار شد.با افزودن بیوچار، بالاترین میزان افزایش ویژگی‌های موردبررسی نسبت به شاهد (B0T1) در مورد جرم مخصوص ظاهری، تیمار B2T6 (7/14%)، تخلخل کلB2T1 (4/5%)، تخلخل مویین B2 (3/64%)، میانگین وزنی قطر خاکدانه به روش الک خشک B1T9 (28%) و میانگین وزنی قطر خاکدانه به روش الک تر B2T1 (2/63%) بود.نتایج بیانگر آن بود که بیشترین اثر بیوچار بر جرم مخصوص ظاهری، تخلخل کل، تخلخل مویین و میانگین وزنی قطر خاکدانه­ها به روش الک تر، در ماه اول و بر میانگین وزنی قطر خاکدانه­ها به روش الک خشک در ماه نهم بوده است و گذشت زمان اثر معنی­داری بر تغییرات تخلخل تهویه­ای نداشت. در مجموع می­توان گفت کهبیوچار با داشتن تخلخل و مقدار کربن آلی قابل‌توجه، سبب بهبود تخلخل و پایداری ساختمان خاک شده است. لذا می­توان از بیوچار برای بهبود ساختمان خاک­های تخریب یافته و ضعیف استفاده کرد.

کلیدواژه‌ها


عنوان مقاله [English]

Long-Term Effects of Palm Leaf Biochar on the Porosity and Structure Stability of a Sandy Clay Loam Soil

نویسندگان [English]

  • Pariya Nasimi 1
  • Ahmad Karimi 2
  • Zahra Gerami 3
1 MSc., Soil Science Department, Faculty of Agriculture, University of Shahrekord, Iran
2 AcaAssistant Professor., Soil Science Department, Faculty of Agriculture, University of Shahrekord, Irandemic staff of Shahrkord university
3 PhD Candidate, Soil Science Department, Faculty of Agriculture, University of Shahrekord, Iran
چکیده [English]

Biochar in soil is an alternative way to increase soil carbon in the long term and improves soil physical properties. The aim of this study was to investigate the long-term effect of palm leaf biochar on different types of soil porosity (air filled, capillary, and total) and structure stability of a sandy clay loam soil. A factorial experiment was performed in pots using a completely randomized design with two factors including the amount of biochar of date leaves at four levels (control=B0, B0.5=0.5%, B1=1%, and B2=2% by weight) and the time after application of biochar at four levels (T1 =one, T3 =3, T6 =6, and T9 =9 months ), with three replications.The results showed that the effect of palm leaf biocharon air-filled and capillary porosity was significant. Also, the effect of time after biochar application on bulk density and porosity was significant.The effect of biochar amount, time after biochar application, and their interaction effects on mean weight diameter (MWD) of aggregates were significant. The highest percentage of increases in treatments compared to the control (B0T1) belonged to B2T6 in bulk density (14.7%), total porosity in B2T1 (5.4%), capillary porosity in B2 (64.3%), MWD of aggregates by dry sieve method in B1T9 (28%), and MWD of aggregates by wet sieve method in B2T1 (63.2%). The results showed that the highest effect of biochar on bulk density, total porosity, capillary porosity, and MWD of aggregates by wet sieve method was in the first month, and on MWD of aggregates by dry sieve method was in the ninth month, while the effect of time on changes in air filled porosity was not significant.Overall, biochar with significant porosity and carbon content improved the porosity and soil structure stability in this study. Therefore, biochar can be used to improve structure of degraded and weak soils.

کلیدواژه‌ها [English]

  • Air filled porosity
  • Capillary porosity
  • Bulk density
  • Mean weight diameter of aggregates
  1. برزگر، ع.ا. 1379. فیزیک خاک پیشرفته. انتشارات دانشگاه شهید چمران اهواز، 235 صفحه.
  2. خادم، ا. رئیسی، ف. و بشارتی، ح. 1396. مروری بر اثرات کاربرد بیوچار بر خصوصیات فیزیکی، شیمیایی و زیستی خاک. نشریه علمی ترویجی مدیریت اراضی، جلد 5، شماره 1، صفحات 13 تا 30.
  3. کرمی، ش. یثربی، ج. صفرزاده شیرازی، ص. رونقی، ع. و قاسمی، ر. 1398. مقایسه اثر چند ماده آلی و بیوچار آن ها بر برخی ویژگی­های خاک. نشریه پژوهش­های خاک (علوم خاک و آب)، جلد 33، شماره3، صفحات 401 تا 414.
  4. موسوی، س.ع.ا.، گویلی، ا. و مسعودی، ف. 1397. اثر بیوچارهای کود گاوی و بقایای نخل تهیه شده در دماهای مختلف بر هدایت هیدرولیکی اشباع و ضرایب انتقال یون کلر در یک خاک لوم شنی. نشریه پژوهش­های خاک (علوم خاک و آب)، جلد 32، شماره4، صفحات 553 تا 567.
  5. نیک­روش، ا.، برومند نسب، س. ناصری، ع.ع. و سلطانی محمدی، ا. 1397. بررسی اثر کاربرد بیوچار و هیدروچار کاه گندم بر خصوصیات فیزیکی یک خاک لوم شنی. نشریه آب و خاک (علوم و صنایع کشاورزی)، جلد 32، شماره 2، صفحات 387 تا 397.
  6. واعظی، ع.ل.، رحمتی، س. و بیات، ح. 1397. ارزیابی حساسیت اندازه­های خاکدانه به فرسایش بین شیاری بر اساس شاخص­های پایداری خاکدانه. نشریه پژوهش­های حفاظت آب و خاک، جلد 25، شماره 2، صفحات 169 تا 185.
  7. Abbas, T., M. Rizwan, S. Ali, M. Adrees, A. Mahmood, M. Zia-ur-Rehman, M. Ibrahim, M. Arshad and M.F. Qayyum. 2018. Biochar application increased the growth and yield and reduced cadmium in drought stressed wheat grown in an aged contaminated soil. Ecotoxicology and Environmental Safety. 148:825–833.
  8. Akhtar, S.S., G.T. Li, M.N. Andersen and F.L. Liu. 2014. Biochar enhances yield and quality of tomato under reduced irrigation. Agricultural Water Management. 138:37–44.
  9. Annabi, M., H. Houot, F. Francou, M. Poitrenaud and Y. Le Bissonnais. 2007. Soil aggregate stability improvement with Urban Composts of different Maturities. Soil Science Society of America Journal. 71: 413-423.
  10. Baiamonte, G., G. Crescimanno, F. Parrino and C.D. Pasquale. 2019. Effect of biochar on the physical and structural properties of a sandy soil. Catena. 175:294-303.
  11. Blake, G.R. and K.H. Hartge. 1986. Bulk density. p. 363-382. In A., Klute (ed.) Methods of soil analysis. Part 1. Physical and mineralogical methods, 2nd ed. Agronomy Monograph no. 9. American Society of Agronomy and Soil Science Society of America, Madison, WI.
  12. Blanco-Canqui, H. 2017. Biochar and soil physical properties. Review and Analysis-Soil Physics and Hydrology. Soil Science Society of America Journal. 81:687-711.
  13. Bouajila, A., and T. Gallali. 2010. Land use effect on soil and particulate organic carbon and aggregate stability in some soils in Tunisia. African Journal Agricultural Research. 5(8):764-774.
  14. Bremner, J.M. 1965. Total nitrogen. p. 1148-1158. In C.A. Black (ed.) Methods of Soil Analysis. Part 2. Monograph. No. 9. American Society of Agronomy and Soil Science Society of America, Madison, WI.
  15. Briggs, C., J.M. Breiner and R.C. Graham. 2012. Physical and chemical properties of Pinus ponderosa charcoal: Implications for soil modification. Soil Science. 177(4):263–268.
  16. Bronick, C.J., and R. Lal. 2005. Soil structure and management: a review. Geoderma. 124(1–2):3–22.
  17. Burrell, L.D., F. Zehetner, N. Rampazzo, B. Wimmer and G. Soja. 2016. Long-term effects of biochar on soil physical properties. Geoderma. 282: 96-102.
  18. Chapman, H.D. 1965. Cation-exchange capacity. Methods of soil analysis. Part 2. Chemical and Microbiological Properties, American Society of Agronomy and Soil Science Society of America, Madison, WI.
  19. Dong, X., T. Guan, G. Li, Q. Lin and X. Zhao. 2016. Long-term effects of biochar amount on the content and composition of organic matter in soil aggregates under field conditions. Journal of Soils and Sediments. 16:1481–1497.
  20. Githinji, L. 2014. Effect of biochar application rate on soil physical and hydraulic properties of a sandy loam. Archives of Agronomy and Soil Science. 60:457–470.
  21. Glaser, B., J. Lehmann and W. Zech. 2002. Ameliorating physical and chemical properties of highly weathered soils in the tropics with charcoal – a review. Biology and Fertility of Soils. 35: 219–230.
  22. Haefele, S.M., Y. Konboon, W. Wongboon, S. Amarante, A.A. Maarifat, E.M. Pfeiffer and C. Knoblauch. 2011. Effects and fate of biochar from rice residues in rice-based systems. Field Crops Research. 121: 430–440.
  23. Hazelton, P., and B. Murphy. 2007. Interpreting soil test results: what do all the numbers mean?. CSIRO publishing, Australia.
  24. Herath, H.M.S.K., M. Camps-Arbestain and M. Hedley. 2013. Effect of biochar on soil physical properties in two contrasting soils: an Alfisol and an Andisol. Geoderma. 209-210:188–197.
  25. Ippolito, J.A., T.F. Ducey, K.B. Cantrell, J.M. Novak and R.D. Lentz. 2015. Designer, acidic biochar influences calcareous soil characteristics. Chemosphere. 142:184-191.
  26. Jien, S.H., and C.S. Wang. 2013. Effects of biochar on soil properties and erosion potential in a highly weathered soil. Catena. 110: 225-233.
  27. Jones, B.E.H., R.J. Haynes and I.R. Phillips. 2010. Effect of amendment of bauxite processing sand with organic materials on its chemical. Physical and microbial properties Journal of Environmental Management. 91: 2281–2288.
  28. Juriga, M., V. Simansky, J. Horak, E. Kondrlova, D. Igaz, N. Pollakova, N. Buchkina and E. Balashov. 2018. The effect of different rates of biochar and biochar in combination with N fertilizer on the parameters of soil organic matter and soil structure. Journal of Ecological Engineering. 19(6):153-161.
  29. Karhu, K., T. Mattila, I. Bergström and K. Regina. 2011. Biochar addition to agricultural soil increased CH4 uptake and water holding capacity. Results from a short-term pilot field study. Agriculture, Ecosystems & Environment. 140:309–13.
  30. Kemper, W.D., and R.C. Rosen. 1986. Aggregate stability and distribution. p. 425-441. In D.LSparks et al. (ed.) Method of soil analysis. Part 3. 3nd ed. American Society of Agronomy and Soil Science Society of America Madison, WI.
  31. Klut, A. 1986. Method of Soil Analysis: Physical, Chemical and Mineralogical Methods. Soil Science Society of America. Madison, Wiscosin, USA.
  32. Lado, M., A. Paz and M. Ben-Hur. 2004. Organic matter and aggregate size interaction, seal formation, and soil loss. Soil Science Society of America Journal. 68:935-942.
  33. Liu, X.H., F.P. Han and X.C. Zhang. 2012. Effect of biochar on soil aggregates in the loess plateau: Results from incubation experiments. International Journal of Agricultural and Biological Engineering. 14:975–979.
  34. Lustosa Carvalho, M., M. Tuzzin de Moraes, C.E.P. Cerri and M.R. Cherubin. 2020. Biochar amendment enhances water retention in a tropical sandy soil. Agriculture. 10(62):1-13.
  35. Major, J., M. Rondon, D. Molina, S.J. Riha and J. Lehmann. 2010. Maize yield and nutrition during 4 years after biochar application to a Colombian savanna oxisol. Plant and Soil. 333: 117–128.
  36. Mukherjee, A., and R. Lal. 2013. Biochar impacts on soil physical properties and greenhouse gas emissions. Agronomy. 3: 313–339.
  37. Nelson, D.W., and L.E. Sommers. 1996. Total carbn organic carbn and organic matter. p. 961-1010. In D.L. Sparks et al. (ed). Method of Soil Analysis. Part 3. 3nd ed. Chemical and Microbiological Properties. American Society of Agronomy and Soil Science Society of America Madison, WI.
  38. O’Toole, A., C. Moni, S. Weldon, A. Schols, M. Carnol, B. Bosman and D.P. Rasse. 2018. Miscanthus biochar had limited effects on soil physical properties, microbial biomass, and grain yield in a four-year field experiment in Norway. Agriculture. 8(171):1-19.
  39. O’Toole, A., C. Moni, S. Weldon, A. Schols, M. Carnol, B. Bosman and D.P. Rasse. 2018. Miscanthus biochar had limited effects on soil physical properties, microbial biomass, and grain yield in a four-year field experiment in Norway. Agriculture. 8(171):1-19.
  40. Obia, A., J. Mulder, V. Martinsen, G. Cornelissen and T. Børresen. 2016. In situ effects of biochar on aggregation, water retention and porosity in light-textured tropical soils. Soil and Tillage Research. 155: 35–44.
  41. Olsen, S.R., and L.E. Sommers. 1982. Phosphorus. p. 403–427. In A.L. Page et al. (ed.) Methods of soil analysis. Part 2. 2nd ed. Agron. Monogr. No. 9. American Society of Agronomy and Soil Science Society of America, Madison, WI.
  42. Omondi, M.O., X. Xia, A. Nahayo, X. Liu, P.K. Korai and G. Pan. 2016. Quantification of biochar effects on soil hydrological properties using meta-analysis of literature data. Geoderma. 274:28–34.
  43. Ouyang, L., F. Wang, J. Tang, L. Yu and R. Zhang. 2013. Effects of biochar amendment on soil aggregates and hydraulic properties. Journal of Soil Science and Plant Nutrition. 13(4): 991-1002.
  44. Pandey, D., A. Daverey and K. Arunachalam. 2020. Biochar: production, properties and emerging role as a support for enzyme immobilization. Journal of Cleaner Production. 255 (In Press).
  45. Reynolds, W.D., C.F. Drury, C.S. Tan, C.A. Fox and X.M. Yang. 2009. Use of indicators and pore volume–function characteristics to quantify soil physical quality. Geoderma.152: 252-263.
  46. Richards, L.A. 1954. Diagnosis and Importance of Salin and Alkali Soil. U.S.D.A. Handbook, No. 60, Washington, D.C.
  47. Schjønning P., L.J. Munkholm and S. Elmholt. 2004. Soil quality in organic. Book of abstracts Eurosoil. Farming effects of crop rotation animal manure and soil compaction.
  48. Sheng, G., S. Fang-fang and Z. Tong, 2014. Effect of rice husk biochar and coal fly ash on some physical properties of expansive clayey soil (Vertisol). Catena. 114: 17-44.
  49. Six, J., R.T. Conant, E.A. Paul and K. Paustian. 2002. Stabilization mechanisms of soil organic matter: implications for C-saturation of soils. Plant Soil. 241(2):155–176.
  50. Tanure, M.M.C., L.M.D. Costa, H.A. Huiz, R.B.A. Fernandes, P.R. Cecon, J.D.P. Junior and J.M.R.D. Luz. 2019. Soil water retention, physiological characteristics, and growth of maize plants in response to biochar application to soil. Soil & Tillage Research. 192:164–173.
  51. Thomas, G.W. 1996. Soil pH and soil asidity. p. 475-490. In Sparks D.L. et al. (ed). Method of Soil Analysis. Part 3. 3nd ed. American Society of Agronomy and Soil Science Society of America Madison. WI.
  52. Verheijen, F., S. Jeffery, A. Bastos, M. Van der Velde and I. Diafas. 2009. Biochar application to soils-a critical scientific review of effects on soil properties. Processes and functions, European commission joint research centre for scientific and technical reports. pp. 51-68.
  53. Wang, D., S.J. Fonte, S.J. Parikh, J. Six and M. Scow. 2017. Biochar additions can enhance soil structure and the physical stabilization of C in aggregates. Geoderma. 303:110–117.
  54. Wu, W., M. Yang, Q. Feng, K. McGrouther, H. Wang, H. Lu and Y. Chen. 2012. Chemical characterization of rice straw-derived biochar for soil amendment. Biomass and Bioenergy. 47: 268–276.
  55. Zhang, Z., Z. Zhu, B. Shen and L. Liu. 2019. Insights into biochar and hydrochar production and applications: a review. Energy. 1(35):1-59.