استفاده از مدل فازی مقیاس‌شده برای شبیه‌سازی نفوذ آب به خاک

نوع مقاله : مقاله پژوهشی

نویسندگان

1 کاندید دکتری آبیاری و زهکشی دانشگاه فردوسی مشهد

2 استاد گروه مهندسی آب دانشگاه فردوسی مشهد

چکیده

بررسی فرآیند نفوذ آب به خاک جزء مراحل اصلی و مهم از حرکت آب در خاک است و از این رو مورد توجه پژوهشگران مختلف قرار گرفته است. با استفاده از تئوری مجموعه‌های فازی می‌توان نفوذ آب به خاک را با در نظر گرفتن تغیرپذیری و عدم قطعیت در پارامترهای مؤثر شبیه‌سازی کرد. در این پژوهش، مدل فازی مقیاس‌شده برای شبیه‌سازی نفوذ آب به خاک غیراشباع ارائه شده است. برای این منظور، مقیاس‌سازی معادله ریچاردز به گونه‌ای انجام شد تا بتوان شبکه آموزشی فازی و متعاقب آن دسته قواعد فازی را برای گستره وسیع‌تری از خاک‌ها بدست آورد. استخراج قواعد فازی با استفاده از شبکه‌های آموزشی بزرگ ساخته شده از حل عددی معادله ریچاردز مقیاس ‌شده انجام شد. مدل فازی مقیاس‌شده برای شرایط مرزی مشخص قادر به شبیه‌سازی جریان برای تمامی خاک‌ها با مقدار پارامتر شکل (n) مشخص می‌باشد. مقایسه نتایج مدل فازی و حل عددی معادله ریچاردز نشان داد که مدل فازی به خوبی امکان شبیه‌سازی نفوذ آب در خاک غیراشباع را فراهم می‌کند (مقدار NRMSE بین 3% تا 5/4%) و مدل فازی مقیاس‌شده قادر به شبیه‌سازی گستره وسیعی از خاک‌های مختلف با مقدار پارامتر شکل (n) مشخص می‌باشد (مقدار NRMSE بین 2/1% تا 5/1%). مدل فازی مقیاس‌شده به گونه‌ای اصلاح شد تا بتواند با یک سری دستورات فازی برای محدوده متغییری از پارامتر شکل (n) نیز کارامد باشد.

کلیدواژه‌ها


عنوان مقاله [English]

Using a Scaled Fuzzy Model for Simulating Soil Water Infiltration

نویسندگان [English]

  • marziye Khorami 1
  • Bijan Ghahraman 2
  • Kamran Davary 2
1 PhD Candidate of Irrigation and Drainage, Department of Water Engineering, Ferdowsi University of Mashhad, Mashhad, Iran
2 Professor, Department of Water Engineering, Ferdowsi University of Mashhad, Mashhad, Iran
چکیده [English]

Investigation of water infiltration process in soil is an important step in soil water movement and, therefore, of interest to different researchers. Fuzzy set theory can be used to simulate soil water infiltration by considering variability and uncertainty in the effective parameters. In this research, a scaled fuzzy model for simulating water infiltration in unsaturated soil is presented. For this purpose, the Richard’s equation was scaled to obtain the fuzzy training network and subsequent fuzzy rules for a wider range of soils. The fuzzy rules were extracted using large training networks made from numerical solution of scaled Richard’s equation. The scaled fuzzy model for the specified boundary conditions is able to simulate the flow for all soils with the specified shape parameter (n) value. Comparison of the results of the fuzzy model and the numerical solution of the Richard’s equation showed that the fuzzy model can well simulate water infiltration in unsaturated soils (NRMSE value between 3% and 4.5%) and the scaled fuzzy model is capable of simulating a wide range of different soils with the same shape parameter (n) (NRMSE value between 1.2% and 1.5%). The scaled fuzzy model was modified to fit a series of fuzzy rules for a range of shape parameter (n) variable.

کلیدواژه‌ها [English]

  • HYDRUS model
  • Infiltration process
  • Richard’s equation
  • Unsaturated flow
  1. خرمی، م و قهرمان، ب. 1396. بررسی عدم قطعیت پارامترهای خاک بر عدم قطعیت پروفیل رطوبتی با استفاده از نظریه‌ی مجموعه‌های فازی. تحقیقات منابع آب ایران. شماره 1. 126-138.
  2. خرمی، م،. قهرمان، ب و داوری،ک. 1398. ارائه یک مدل فازی برای مدل سازی نفوذ آب در خاک. نشریه پژوهش‌های خاک (علوم خاک و آب). شماره 33. جلد 3. 275-287.
  3. صادقی، م،. قهرمان ، ب. 1389. مقیاس‌سازی توامان منحنی رطوبتی و تابع هدایت هیدرولیکی خاک. نشریه آب و خاک (علوم و صنایع کشاورزی)، 24 (2): 394-406.
  4. قهرمان، ب.، صادقی، م.، گهردوست منفرد، م.ح. 1390. مقیاس‌سازی منحنی مشخصه رطوبتی خاک‌های غیرمتشابه. مجله پژوهش آب ایران. 9: 113-120.
  5. Ahuja L.R., and Williams R.D. 1991. Scaling water characteristic and hydraulic conductivity based on Gregson-Hector-McGowan approach. Soil Science Society of America Journal, 55: 308-319.
  6. Bardossy. A., and M. Disse, 1993. Fuzzy rule-based models for infiltration. Water Resources Research. VOL.29. NO2. PAGES 373-382.
  7. Bardossy. A, Bronster. A, and Merz. B., 1995, 1-,2- and 3-dimensional modeling of water movement in the unsaturated soil matrix using a fuzzy approach, Advances in Water Resources, Vol. 18, No. 4, pp. 237-251.
  8. Farthing, M, W and Ogden, F. L. 2017. Numerical Solution of Richards’ Equation: A Review of Advances and Challenges. Soil Science Society of America Journal. V81. N 6. 1257-1269.
  9. Green, W. H., and G. A. Ampt. 1911. Studies of soil physics, 1, The flow of air and water through soils, Journal of Agriculture Science., 4, 1-24.
  10. Holtan, H. N. 1961. A concept for infiltration estimates in watershed engineering, publ. U.S. Dep. Agric., ARS 41-51, 25 pp.
  11. Horton, R.E. 1940. An Approach Towards a Physical Interpretation of Infiltration Capacity. Soil Science Society of America Proceedings, 5: 399–417.
  12. Karvonen, T. 1988. A model for predicting the effect of drainage on soil moisture, soil temperature and corp yield, Ph.D thesis, 215 pp., Univ . of Technol., Helsinki.
  13. Kosugi K., and Hopmans J.W. 1998. Scaling water retention curves for soils with lognormal pore-size distribution. Soil Science Society of America Journal, 62: 1496-1504.
  14. Miller E.E., and Miller R.D. 1956. Physical theory for capillary flow phenomena. Journal of Applied Physics, 27: 324-332.
  15. Ozkan, I and Turksen, I.B, 2014. Uncertainty and Fuzzy Decisions, Chapter 2. Springer Science, Busines Media Dordrecht.
  16. Philip, J. R. 1969. The Theory of Infiltration. Advances in Hudroscience. Academic Press, New York, NY, USA.
  17. Reichardt K., Nielsen D.R., and Biggar J.W. 1972. Scaling of horizontal infiltration into homogeneous soils. Soil Science Society of America Journal, 36: 241-245.
  18. Richards, L. A. 1931. Capillary conduction of liquids through porous media, Physics, I, 318-33.
  19. Sadeghi M., Ghahraman B., Davary K., Hasheminia S.M., and Reichardt K. 2011. Scaling to generalize a single solution of Richards' equation for soil water redistribution. Scientia Agricola, 68(5): 582-591.
  20. Schlüter S., Vanderborght J., and Vogel H.J. 2012. Hydraulic non-equilibrium during infiltration induced by structural connectivity. Advances in Water Resources, 44: 101-112.
  21. Schulz and Huwe.1997. Water flow modeling in the unsaturated zone with imprecise parameters using a fuzzy approach. Journal of Hydrology 201:211-229.
  22. Schulz, K and Huwe, B .1999. Uncertainty and sensitivity analysis of water transport modeling in a layered soil profile using fuzzy set theory. Journal of Hydroinformatics. 01. 2.
  23. Shouse P.J., and Mohanty B.P. 1998. Scaling of near-saturated hydraulic conductivity measured using disc infiltrometers. Water Resources Research, 34: 1195-1205.
  24. Simmons C.S., Nielsen D.R., and Biggar J.W. 1979. Scaling of field-measured soil-water properties. Hilgardia, 47: 77-173.
  25. Simunek, J. Van Genuckten, M.Th, and Sejna, M. 2006. The Hydrus Software Package for Simulating the Two- and Three-Dimensional Movement of Water, Heat, and Multiple Solutes in Variably – Saturated Media. Technical Manual.
  26. Tuli A., Kosugi K., and Hopmans J.W. 2001. Simultaneous scaling of soil water retention and unsaturated hydraulic conductivity functions assuming lognormal pore-size distribution. Advances in Water Resources, 24: 677-688.
  27. Verma,P , Singh, P. George, K. V. Sing , H. V. Devotta, S. Singh, R.N.  2009. Uncertainty analysis of transport of water and pesticide in an unsaturated layered soil profile using fuzzy set theory. Applied Mathematical Modelling 33: 770-782.
  28. Vogel T., Cislerova M., and Hopmans J.W. 1991. Porous media with linearly hydraulic properties. Water Resources Research, 27: 2735-2741.
  29. Warrick A.W., and Amoozegar-Fard A. 1979. Infiltration and drainage calculations using spatially scaled hydraulic properties. Water Resources Research, 15: 1116-1120.
  30. Warrick A.W., and Hussen A.A. 1993. Scaling of Richards’ equation for infiltration and drainage. Soil Science Society of America Journal, 57: 15-18.
  31. Warrick A.W., Lomen D.O., and Yates S.R. 1985. A generalized solution to infiltration. Soil Science Society of America Journal, 49: 34-38.
  32. Warrick A.W., Mullen G.J., and Nielsen D.R. 1977. Scaling of field measured hydraulic properties using a similar media concept. Water Resources Research, 13: 355-362.
  33. Wu, Q and Mencer, O. 2009. Evaluation Sampling Based Hotspot Detection. Architecture of Computing Systems– ARCS. Lecture Notes in Computer Science, vol 5455. Springer, Berlin, Heidelberg.
  34. Zadeh, L. A. 1965. Fuzzy sets, Inf. Control, 8: 338-353.