اثر ورمی‌کمپوست بر سرعت رهاسازی پتاسیم از خاک برخی تاکستان‌های شهرستان ملایر با افت‌های مختلف

نوع مقاله : مقاله پژوهشی

نویسندگان

1 استادیار گروه علوم و مهندسی خاک، دانشکده کشاورزی، دانشگاه ملایر

2 دانشجوی کارشناسی ارشد گروه علوم ومهندسی خاک، دانشکده کشاورزی، دانشگاه ملایر

3 استادیار گروه علوم و مهندسی خاک، دانشکده کشاورزی، دانشگاه رازی ، کرمانشاه

چکیده

ورمی­کمپوست به عنوان یک اصلاح کننده آلی، اثر قابل ملاحظه­ای بر کیفیت خاک و رشد گیاهان دارد و بیشتر عناصر غذایی موجود در ورمی­کمپوست برای گیاهان قابل استفاده می­باشند. هدف از این تحقیق بررسی اثر ورمی­کمپوست گاوی بر فراهمی و سرعت رهاسازی پتاسیم از شش خاک سطحی (0 تا 30 سانتی­متر) تاکستان با بافت­های مختلف (لوم، لوم رسی و لوم شنی رسی) است. مطالعات سینتیکی با استفاده از عصاره­گیری پی­در­پی با محلول کلریدکلسیم 01/0 مولار، در فاصله زمانی 25/0تا 72 ساعت در خاک­های شاهد و تیمار شده با دو درصد از ورمی­کمپوست گاوی انجام شد. افزودن ورمی­کمپوست گاوی به خاک­ها باعث افزایش فراهمی پتاسیم در خاک­ها شد. میانگین پتاسیم تجمعی رهاشده از خاک­های شاهد و تیمار شده، به ترتیب 9/526 و 9/547 میلی­گرم برکیلوگرم به­دست آمد. با توجه به توصیف داده­های سرعت رهاسازی توسط معادله الوویچ ساده، فرآیند رها­سازی پتاسیم از خاک­ها احتمالاً متأثر از پدیده پخشیدگی می­باشد. ثابت سرعت رهاسازی پتاسیم در خاک­ها بین 9/34 تا 1/132 میلی­گرم برکیلوگرم در ساعت به دست آمد. یافته­های تحقیق اثر متفاوتی از ورمی­کمپوست را بر سرعت رهاسازی پتاسیم در خاک­های مورد مطالعه نشان داد. افزودن ورمی­کمپوست به خاک­های لوم رسی با درصد رس بیشتر، ماده آلی کمتر و توانایی تثبیت پتاسیم موجب افزایش سرعت رهاسازی پتاسیم و در خاک­های لوم و لوم شنی رسی با درصد رس کمتر، ماده آلی بیشتر و توانایی کمتر تثبیت پتاسیم موجب کاهش سرعت رهاسازی پتاسیم نسبت به خاک شاهد شد. بنابراین ورمی­کمپوست اثر متعادل کننده بر سرعت رهاسازی پتاسیم در خاک­های مورد مطالعه داشت. دلیل این امر را می­توان به برهم­کنش ورمی­کمپوست با ذرات خاک به ویژه رس­ها نسبت داد. با توجه به اهمیت پتاسیم در تغذیه انگور و کمبود پتاسیم در برخی خاک­ها، مصرف ورمی­کمپوست در تاکستان­های شهرستان ملایر توصیه می­شود. 

کلیدواژه‌ها


عنوان مقاله [English]

Vermicompost Effect on Potassium Release Rate from Some Vineyard Soils of Malayer Area with Different Textures

نویسندگان [English]

  • M. Zarabi 1
  • Maryam Karimi 2
  • A. Fatemi 3
  • Zahra varasteh khanlari 1
1 , Assistant professor, Malayer University
2 MSc student, Malayer UniversityDepartment of Soil Science and engineering, Faculty of Agriculture, Malayer University, Malayer, Iran
3 Assistant professor, Razi University
چکیده [English]

Vermicompost, as a nutrient-rich organic amendment, contains most nutrients in plant-available forms and can influence soil fertility and plant growth significantly. The objective of this study was to investigate the availability and release rate of potassium (K) in six vineyard topsoil (0-30 cm) with different textures (loam, clay loam, and sandy clay loam) treated with 2 % of cattle manure vermicompost (VC), through successive extractions with 0.01 mol L-1 CaCl2 over periods of 0.25-72 hours. The results showed that VC addition to soils increased the K availability. The average cumulative K released after 72 h from the control and treated soils was 526.9 and 547.9 mg kg−1, respectively. Due to the conformity of data to the Simple Elovich Equation it was suggested that process of K release from soils was affected by diffusion processes. Simple Elovich rate constant values in soils ranged from 34.9 to 132.1 mg kg−1h-1.The VC had different effects on K release rate in soils. In clay loam soils with high clay content, low organic matter and K fixation capacity, VC increased K release rate, while in loam and sandy clay loam soils with low clay, high organic matter, and low K fixation capacity, it decreased K release rate. Overall, VC had a balancing effect on K release rate. It could be related to VC interaction with soil particles, especially clays. Due to the importance of K in grape nutrition and K deficiency in some soils, the use of VC in vineyards is recommended.

کلیدواژه‌ها [English]

  • Organic amendment
  • Grape nutrition
  • Elovich Equation
  • K fixation
  • K availability
  1. پرستش، ف.، ح. علیخانی.، ح. اعتصامی.، و م. حسندخت. 1398. اثر ورمی­کمپوست غنی شده با باکتری­های حل کننده فسفات بر فراهمی فسفر،  pHو شاخص­های زیستی در یک خاک آهکی. مدیریت خاک و تولید پایدار. 9(3). 25-46.
  2. توفیقی، ح. 1374. سینتیک آزاد شدن پتاسیم از خاک­های شالیزاری شمال ایران. 1- مقایسه و ارزیابی معادلات سینتیک مرتبه اول، مرتبه صفر و دیفیوژن پارابولیکی. مجله علوم کشاورزی ایران. 41. 16-27.
  3. خوشگفتارمنش، الف.،  و عرب زادگان، ح. 1386. ارزیابی وضعیت تغذیه­ای گیاه و مدیریت بهینه کودی. انتشارات دانشگاه صنعتی اصفهان. 168 صفحه.
  4. دشتی، م.، م. دهستانی اردکانی.، م. شیرمردی.، و ع. مومن­پور. 1398. اثر کود دامی و ورمی­کمپوست بر افزایش تحمل شوری گیاه باران طلایی. پژوهش و توسعه جنگل. 5 (4). 541-556.
  5. سلطانی طولارود، ع.، ک. عبدالهی.، و ب. اسماعیل­پور. 1398. تأثیر کاربرد ورمی­کمپوست و پوترسین بر شاخص­های مورفولوژیکی و فیزیولوژیکی خیار (). نشریه علوم سبزی­ها. 3(1). 39- 51.
  6. شریفی، پ.، م. شرفا.، و م.ح. محمدی. 1398. مقایسه تأثیر کود گاوی، ورمی­کمپوست و آزولا بر ویژگی­های شیمیایی و هیدرولیکی خاک شور-سدیمی. نشریه پژوهش­های حفاظت آب و خاک. 26(2). 177-194.
  7. کریمی، کریمی، م. 1395. سینتیک رهاسازی پتاسیم از خاک باغات انگور شهرستان ملایر. پایان نامه کارشناسی ارشد. دانشگاه ملایر. 142 صفحه.
  8. محمودی شناس، م. 1395. روابط کمیت-شدت پتاسیم در برخی از خاک­های آهکی تاکستان­های شهرستان ملایر. پایان نامه کارشناسی ارشد. دانشگاه ملایر. 117 صفحه.
  9. مستشاری، م.، الف، خسروی.، الف، بای­بوردی.، م. بصیرت.، الف، اخیانی.، م.ح. سدری.، و ع. مجیدی. 1395. راهنمای تغذیه گیاهی انگور. نشر آموزش کشاورزی. موسسه تحقیقات خاک و آب. 53 صفحه.
  10. Adhikary, S. 2012. Vermicompost, the story of organic gold: A review.
  11. Aksakal, E.L., Sari, S., and Angin, I. 2016. Effects of vermicompost application on soil aggregation and certain physical properties. Land Degradation & Development. 27, 983-995.
  12. Angelova, V., Akova, V., Artinova, N., and Ivanov, K. 2013. The effect of organic amendments on soil chemical characteristics. Bulgarian Journal of Agricultural Science. 19, 958-971.
  13. Atiyeh, R., Edwards, C., Subler, S., and Metzger, J. 2001. Pig manure vermicompost as a component of a horticultural bedding plant medium: effects on physicochemical properties and plant growth. Bioresource technology. 78, 11-20.
  14. Bhattacharjee, G., Chaudhuri, P., and Datta, M. 2001. Response of paddy (Var. TRC-87-251) crop on amendment of the field with different levels of vermicompost. Asian Journal of Microbiology, Biotechnology and Environmental Sciences. 3, 191-196.
  15. Blouin, M., Barrere, J., Meyer, N., Lartigue, S., Barot, S., and Mathieu, J. 2019. Vermicompost significantly affects plant growth. A meta-analysis. Springer.
  16. Bouyoucos, G.J. 1962. Hydrometer method improved for making particle size analyses of soils1. Agronomy Journal. 54, 464-465.
  17. Canellas, L.P., Olivares, F.L., Okorokova-Façanha, A.L., and Façanha, A.R. 2002. Humic acids isolated from earthworm compost enhance root elongation, lateral root emergence, and plasma membrane H+-ATPase activity in maize roots. Plant physiology. 130, 1951-1957.
  18. Chaoui, H.I., Zibilske, L.M., and Ohno, T. 2003. Effects of earthworm casts and compost on soil microbial activity and plant nutrient availability. Soil Biology and Biochemistry. 35, 295-302.
  19. Chaudhary, D. R., Bhandari, S. C., and Shukla, L. M. 2004. Role of vermicompost in sustainable agriculture–A review. Agricultural Reviews. 25(1), 29-39.
  20. Chaulagain, A., Gauchan, D., and Lamichhane, J. 2017. Vermicompost and its role in plant growth promotion. International Journal of Research. 4, 850-864.
  21. Chen, J.-H. 2006. The combined use of chemical and organic fertilizers and/or biofertilizer for crop growth and soil fertility, International workshop on sustained management of the soil-rhizosphere system for efficient crop production and fertilizer use. Citeseer, pp. 1-11.
  22. Demir, Z. 2020. Alleviation of Adverse Effects of Sodium on Soil Physicochemical Properties by Application of Vermicompost. Compost Science & Utilization. 28, 100-116.
  23. Edison, T.J.I., and Sethuraman, M. 2013. Biogenic robust synthesis of silver nanoparticles using Punica granatum peel and its application as a green catalyst for the reduction of an anthropogenic pollutant 4-nitrophenol. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy. 104, 262-264.
  24. Edwards, C.A. 1995. Historical overview of vermicomposting. Biocycle. 36, 56-58.
  25. Edwards, C.A. 2004. The importance of earthworms as key representatives of the soil fauna. Earthworm ecology. 2, 3-11.
  26. Evangelou, V., Karathanasis, A., and Blevins, R. 1986. Effect of soil organic matter accumulation on potassium and ammonium quantity-intensity relationships. Soil Science Society of America Journal. 50, 378-382.
  27. Fernández‐Bayo, J., Nogales, R., and Romero, E. 2009. Assessment of three vermicomposts as organic amendments used to enhance diuron sorption in soils with low organic carbon content. European journal of soil science. 60, 935-944.
  28. Fleming, I., and Williams, D.H. 1966. Spectroscopic methods in organic chemistry. Springer.
  29. Gómez-Brandón, M., and Domínguez, J. 2014. Recycling of solid organic wastes through vermicomposting: microbial community changes throughout the process and use of vermicompost as a soil amendment. Critical Reviews in Environmental Science and Technology. 44, 1289-1312.
  30. Gutiérrez-Miceli, F.A., Santiago-Borraz, J., Molina, J.A.M., Nafate, C.C., Abud-Archila, M., Llaven, M.A.O., Rincón-Rosales, R., and Dendooven, L. 2007. Vermicompost as a soil supplement to improve growth, yield and fruit quality of tomato (Lycopersicum esculentum). Bioresource Technology. 98, 2781-2786.
  31. Halvin, J. L., Beaton, J. D., Tisdale, S. L., and Nelson, W. L. 2005. Soil fertility and fertilizers: an introduction to nutrient management. Pretice Hall, New Jersey.
  32. Havlin, J., Westfall, D., and Olsen, S. 1985. Mathematical models for potassium release kinetics in calcareous soils. Soil Science Society of America Journal. 49, 371-376.
  33. Hosseinpur, A.R., Raisi, T., Kiani, S., and Motaghian, H.R. 2014. Potassium-release characteristics and their correlation with bean (Phaseolus vulgaris) plant indices in some calcareous soils. Communications in soil science and plant analysis. 45, 726-740.
  34. Jadhav, A., Talashilkar, S., and Powar, A. 1997. Influence of the conjunctive use of FYM, vermicompost and urea on growth and nutrient uptake in rice. Journal of Maharashtra Agricultural Universities. 22, 249-250.
  35. Johnston, A., and Goulding, K. 1990. The use of plant and soil analyses to predict the potassium supplying capacity of soil, Development of K-fertilizer recommendations. Proceedings of the 22nd Colloquium of the International Potash Institute, International Potash Institute Bern Switzerland, pp. 177-204.
  36. Johnston, A., Goulding, K., and Mercer, E. 1993. Potassium leaching from a sandy loam soil. Potash review. 1-16.
  37. Kaushik, P., and Garg, V. 2003. Vermicomposting of mixed solid textile mill sludge and cow dung with the epigeic earthworm Eisenia foetida. Bioresource technology. 90, 311-316.
  38. Khademi, H., and Arocena, J. 2008. Kaolinite formation from palygorskite and sepiolite in rhizosphere soils. Clays and Clay Minerals. 56, 429-436.
  39. Kumar, A.V. 2005. Vermitechnology. APH Publishing Corporation: New Delhi, India.
  40. Kunze, G., and Dixon, J.B. 1986. Pretreatment for mineralogical analysis. Methods of Soil Analysis: Part 1 Physical and Mineralogical Methods. 5, 91-100.
  41. Li, J., Hoang, K. T. K., Hassan, N., and Marschner, P. 2019. Vermicompost Influences Soil P Pools and Available N—Effect of Placement and Combination with Inorganic Fertiliser. Journal of Soil Science and Plant Nutrition. 19(4), 900-905.
  42. Lim, P.N., Wu, T.Y., Clarke, C., and Daud, N.N. 2015a. A potential bioconversion of empty fruit bunches into organic fertilizer using Eudrilus eugeniae. International journal of environmental science and technology. 12, 2533-2544.
  43. Lim, S. L., Wu, T. Y., Lim, P. N., and Shak, K. P. Y. 2015b. The use of vermicompost in organic farming: overview, effects on soil and economics. Journal of the Science of Food and Agriculture. 95(6), 1143-1156.
  44. Lim, S.L., Wu, T.Y. 2015. Determination of maturity in the vermicompost produced from palm oil mill effluent using spectroscopy, structural characterization and thermogravimetric analysis. Ecological Engineering. 84, 515-519
  45. Lim, S.L., Wu, T.Y., and Clarke, C. 2014. Treatment and biotransformation of highly polluted agro-industrial wastewater from a palm oil mill into vermicompost using earthworms. Journal of agricultural and food chemistry. 62, 691-698.
  46. Lim, S.L., Wu, T.Y., Sim, E.Y.S., Lim, P.N., and Clarke, C. 2012. Biotransformation of rice husk into organic fertilizer through vermicomposting. Ecological Engineering. 41, 60-64.
  47. Maheswarappa, H., Nanjappa, H., and Hegde, M. 1999. Influence of organic manures on yield of arrowroot, soil physico-chemical and biological properties when grown as intercrop in coconut garden. Annals of Agricultural Research. 20, 318-323.
  48. Mahmud, M., Abdullah, R., and Yaacob, J.S. 2018. Effect of vermicompost amendment on nutritional status of sandy loam soil, growth performance, and yield of pineapple (Ananas comosus var. MD2) under field conditions. Agronomy. 8, 183.
  49. Manivannan, S., Balamurugan, M., Parthasarathi, K., Gunasekaran, G., and Ranganathan, L. 2009. Effect of vermicompost on soil fertility and crop productivity-beans (Phaseolus vulgaris). Journal of environmental biology. 30, 275-281.
  50. Masciandaro, G., Macci, C., Doni, S., and Ceccanti, B. 2010. Use of earthworms (Eisenia fetida) to reduce phytotoxicity and promote humification of pre-composted olive oil mill wastewater. Journal of the Science of Food and Agriculture. 90, 1879-1885.
  51. Najafi-Ghiri, M. 2014. Effects of zeolite and vermicompost applications on potassium release from calcareous soils. Soil and Water Research. 9(1), 31-37.
  52. Oo, A.N., Banterng, P., Polthanee, A., and Trelo-Ges, V. 2010. The effect of different fertilizers management strategies on growth and yield of upland black glutinous rice and soil property. Asian journal of plant sciences. 9, 414.
  53. Orozco, F., Cegarra, J., Trujillo, L., and Roig, A. 1996. Vermicomposting of coffee pulp using the earthworm Eisenia fetida: effects on C and N contents and the availability of nutrients. Biology and fertility of soils. 22, 162-166.
  54. Padmavathiamma, P.K., Li, L.Y., and Kumari, U.R. 2008. An experimental study of vermi-biowaste composting for agricultural soil improvement. Bioresource Technology. 99, 1672-1681.
  55. Page, A., Miller, R., and Keeney, D. 1982. Methods of soil analysis. Part 2. American Society of Agronomy. Soil Science Society of America, Madison, WI, USA.
  56. Parthasarathi, K., Balamurugan, M., and Ranganathan, L. 2008. Influence of vermicompost on the physico-chemical and biological properties in different types of soil along with yield and quality of the pulse crop-blackgram. Journal of Environmental Health Science & Engineering. 5, 51-58.
  57. Pattnaik, S., and Reddy, M.V. 2010. Nutrient status of vermicompost of urban green waste processed by three earthworm species—Eisenia fetida, Eudrilus eugeniae, and Perionyx excavatus. Applied and Environmental Soil Science.
  58. Prabha, M. 2009. Waste management by vermitechnology. Indian Journal of Environmental Protection. 29, 795-800.
  59. Rady, M., Abd El-Mageed, T., Abdurrahman, H., and Mahdi, A. 2016. Humic acid application improves field performance of cotton (Gossypium barbadense L.) under saline conditions. The Journal of Animal & Plant Sciences. 26, 487-493.
  60. Rao, C.S., Rao, A.S., and Rupa, T. 2000. Plant mobilization of soil reserve potassium from fifteen smectitic soils in relation to soil test potassium and mineralogy. Soil science. 165, 578-586.
  61. Rao, K.R. 2002. Induced host plant resistance in the management of sucking insect pests of groundnut. Annals of Plant Protection Sciences. 10, 45-50.
  62. Rhoades, J. 1996. Salinity: Electrical conductivity and total dissolved solids. Methods of Soil Analysis: Part 3 Chemical Methods. 5, 417-435.
  63. Roberts, P., Jones, D.L., and Edwards-Jones, G. 2007. Yield and vitamin C content of tomatoes grown in vermicomposted wastes. Journal of the Science of Food and Agriculture. 87, 1957-1963.
  64. Rowell, D.L. 1994. Soil science: methods and applications. Longman Scientific & Technical.
  65. Roy, S., Arunachalam, K., Dutta, B.K., and Arunachalam, A. 2010. Effect of organic amendments of soil on growth and productivity of three common crops viz. Zea mays, Phaseolus vulgaris and Abelmoschus esculentus. Applied Soil Ecology. 45, 78-84.
  66. Savari, M., and Gharechaee, H. 2020. Utilizing the theory of planned behavior to predict Iranian farmers’ intention for safe use of chemical fertilizers. Journal of Cleaner Production.263, 121512.
  67. Sharaf, S., Higazy, A., and Hebeish, A. 2013. Propolis induced antibacterial activity and other technical properties of cotton textiles. International Journal of Biological Macromolecules. 59, 408-416.
  68. Sharma, K., Sharma, S., Bawa, S., Singh, S., Chandrika, D.S., Sharma, V., Khokhar, A., Grace, J.K., Rao, C.S., and Maruthi Sankar, G. 2015. Combined effect of tillage and organic fertilization on soil quality key indicators and indices in alluvial soils of Indo-Gangetic Plains under rainfed maize–wheat system. Archives of Agronomy and Soil Science. 61, 313-327.
  69. Sharma, S., Pradhan, K., Satya, S., and Vasudevan, P. 2005. Potentiality of earthworms for waste management and in other uses–A review. The Journal of American Science. 1, 4-16.
  70. Simard, R., Zizka, J., and De Kimpe, C. 1992. Release of potassium and magnesium from soil fractions and its kinetics. Soil Science Society of America Journal. 56, 1421-1428.
  71. Singh, R., Sharma, R., Kumar, S., Gupta, R., and Patil, R. 2008. Vermicompost substitution influences growth, physiological disorders, fruit yield and quality of strawberry (Fragaria x ananassa Duch.). Bioresource Technology. 99, 8507-8511.
  72. Sparks, D. L., and Liebhardt, W. C. 1981. Effect of long‐term lime and potassium applications on quantity‐intensity (Q/I) relationships in sandy soil. Soil Science Society of America Journal. 45(4), 786-790.
  73. Sparks, D., Page, A., Helmke, P., and Loeppert, R. 1996. Methods of Soil Analysis, Part 3—Chemical Methods; Sparks, DL, Ed. Soil Science Ssociety of American: Madison, WI, USA.
  74. Sparks, D.L. 2013. Kinetics of soil chemical processes. Academic press.
  75. Stevenson, F.J. 1994. Humus chemistry: genesis, composition, reactions. John Wiley & Sons.
  76. Valderrama, C., Arevalo, J.A., Casas, I., Martinez, M., Miralles, N., and Florido, A. 2010. Modelling of the Ni (II) removal from aqueous solutions onto grape stalk wastes in fixed-bed column. Journal of Hazardous Materials. 174, 144-150.
  77. Wang, F., and Huang, P. 2001. Effects of organic matter on the rate of potassium adsorption by soils. Canadian Journal of Soil Science. 81, 325-330.
  78. Wei, X. X., Xiong, J. F., Li, T., Wen, J., Zeng, X. B., and Yu, D. H. 2020. Effects of different organic amendments on soil organic carbon and its labile fractions in the paddy soil of a double rice cropping system. Ying Yong Sheng tai xue bao= The Journal of Applied Ecology. 31(7), 2373-2380.
  79. Yadav, K.D., Tare, V., and Ahammed, M.M. 2010. Vermicomposting of source-separated human faeces for nutrient recycling. Waste Management. 30, 50-56.
  80. Zandonadi, D.B., Canellas, L.P., and Façanha, A.R. 2007. Indolacetic and humic acids induce lateral root development through a concerted plasmalemma and tonoplast H+ pumps activation. Planta. 225, 1583-1595.
  81. Ziadi, N., Simard, R., and Tran, T. 2001. Models for potassium release kinetics of four Humic Gleysols high in clay by electro-ultrafiltration. Canadian Journal of Soil Science. 81, 603-611.