برآورد پتانسیل تولید نیشکر با مدل‌های مختلف در اراضی جنوب استان خوزستان

نوع مقاله : مقاله پژوهشی

نویسندگان

1 استادیار پژوهش، مؤسسه تحقیقات خاک و آب، سازمان تحقیقات، آموزش و ترویج کشاورزی، تهران، ایران

2 استادیار پژوهش، موسسه تحقیقات خاک و آب، سازمان تحقیقات، آموزش و ترویج کشاورزی، تهران، ایران

چکیده

درک شناخت عواملی که پیش‌بینی عملکرد منطقه­ای محصول نیشکر را محدود کرده و روش‌های مدیریت را بهبود بخشد، امری ضروری است. هدف از این تحقیق انتخاب مدلی بود که پتانسیل تولید نیشکر را با در نظر گرفتن ویژگی­های اقلیمی، گیاهی و خاکی و زمین‌نما منطقه برآورد کند. مناطق موردمطالعه در جنوب استان خوزستان شامل کشت و صنعت­های امیرکبیر، میزا کوچک خان، دعبل خزایی، سلمان فارسی و فارابی بود. بدین منظور 100 سایت در مزارع مناطق مختلف تحت کشت نیشکر در استان خوزستان بر اساس تنوع در ویژگی های خاک موردمطالعه قرار گرفت. روش انجام این تحقیق طی دو سلسله‌مراتب انجام شد. در مرحله اول پتانسیل تولید نیشکر با استفاده از روش مدل رشد فائو برآورد شد و در مرحله دوم پتانسیل تولید اراضی برای نیشکر با توجه به تأثیر عوامل محدودکننده در خاک (که به‌صورت شاخص خاک به روش پارامتری محاسبه و موجب کاهش عملکرد محصول نیشکر در مرحله اول شد) برآورد گردید. برای تجزیه‌ و تحلیل داده‌ها ، رگرسیون به روش‌های استاندارد، گام‌به‌گام و منحنی تخمین به کار رفت. در رگرسیون به روش استاندارد و گام‌به‌گام ویژگی­های خاک به‌عنوان متغیر مستقل و عملکرد مشاهده‌شده به‌عنوان متغیر وابسته در نظر گرفته شد و درروش منحنی تخمین به روش­های خطی، درجه دوم و درجه سوم، عملکرد مشاهده‌شده نیشکر به‌عنوان متغیر مستقل و عملکرد پیش‌بینی‌شده به‌عنوان متغیر وابسته انتخاب شدند. نتایج مرحله اول نشان داد که پتانسیل تولید محصول به روش مدل رشد فائو 8/95 تن در هکتار است و نتایج مرحله دوم نشان داد که پتانسیل تولید اراضی برای نیشکر در منطقه در سطوح مختلف مدیریتی از 18 تا 3/69 تن در هکتار تخمین زده شد.  از عوامل کاهش عملکرد می‌توان به عوامل محدودکننده‌ای از قبیل محدودیت‌های آهک، بافت خاک سنگین و خیلی سنگین، زهکشی، شوری و سدیمی بودن و عدم مدیریت مناسب اشاره نمود. نتایج روش رگرسیون استاندارد و گام‌به‌گام نشان دادند که به ترتیب ضریب تبیین 52/0 و 49/0 و خطای استاندارد (ME) برابر 13/10 و 77/9 تن در هکتار به دست آمد. ویژگی‌های خاک به روش استاندارد تا 52 درصد و به روش گام‌به‌گام تا 49 درصد توانست عملکرد را پیش­بینی کند و درروش منحنی تخمین برای مدل خطی، درجه دوم و درجه سوم، ضریب تبیین به ترتیب 74/0، 85/0 و 87/0 و خطای استاندارد 8/7، 8/5 و 3/5 تن در هکتار محاسبه شد. بنابراین روش منحنی تخمین درجه سوم که از مدل رشد فائو برای پیش‌بینی عملکرد محصول استفاده نموده دارای دقت بالاتر و خطای کمتر از مدل رگرسیون استاندارد و گام‌به‌گام است که فقط از اثر ویژگی­های سرزمین بر عملکرد مشاهده‌شده را استفاده نموده است

کلیدواژه‌ها

موضوعات


عنوان مقاله [English]

Estimation of Sugarcane Production Potential Using Different Models in the Southern Lands of Khuzestan Province

نویسندگان [English]

  • Seyed Alireza Seyed Jalali 1
  • Mirnaser Navidi 1
  • ali zeinadini Meimand 2
1 Assistant Professor, Soil and Water Research Institute, Agricultural Research, Education and Extension Organization (AREEO), Karaj, Iran
2 Assistant Professor, Soil and Water Research Institute, Agricultural Research, Education and Extension Organization (AREEO), Karaj, Iran
چکیده [English]

Understanding the factors that limit prediction of regional performance of sugarcane crop and improve management practices is essential. The purpose of this study was to select a model that could estimate the potential of sugarcane production by considering the climatic, plant, and soil and terrain characteristics of the region. The study areas in the south of Khuzestan Province included the agro-industries of Amir Kabir, Miza Kuchak Khan, Dabal Khazaei, Salman Farsi, and Farabi. For this purpose, 100 sites in farms of different areas under sugarcane cultivation were studied based on diversity in soil characteristics. The method of this research was done in two hierarchies. In the first stage, estimation of sugarcane production potential using FAO growth model and, in the second stage, estimation of land production potential for sugarcane according to the effect of limiting factors in soil (as calculated using soil index with parametric method) that reduced yield in the first stage. To analyze the data, regression by standard methods, stepwise, and estimation curve were used. In standard and stepwise regression, soil properties were considered as an independent variable and the observed yield was considered as a dependent variable. In the linear, second and third degree estimation curve methods, the observed yield of sugarcane was considered as an independent variable and predicted yield was selected as dependent variable. The results of the first phase showed that the production potential of the FAO growth model was 95.8 tons/ha while the results of the second phase showed that the production potential of sugarcane in the region at different management levels was estimated from 18 to 69.3 tons/ha. Factors of yield reduction included limiting factors such as lime content, heavy and very heavy soil texture, drainage, salinity and sodicity, and lack of proper management. The results of standard and stepwise regression methods showed that the coefficient of determination was 0.52 and 0.49 and the standard error (ME) was 10.13 and 9.77 tons/ha, respectively. Soil properties could predict yield by standard method up to 52% and stepwise method up to 49%. In the estimation curve method for linear model, second degree, and third degree, the coefficients of determination were 0.74, 0.85, and 0.87, respectively, and standard errors were 7.8, 5.8 and 5.3 tons/ha. Therefore, the third degree estimation curve method, which uses the FAO growth model to predict crop yield, has higher accuracy and less error than the standard and stepwise regression model, which use only the effect of land characteristics on the observed yields.

کلیدواژه‌ها [English]

  • Soil index
  • Yield prediction
  • FAO crop model
  1. خواجه پور، م. تولید نباتات صنعتی. انتشارات جهاد دانشگاهی، دانشگاه صنعتی اصفهان. اصفهان، 257 صفحه.
  2. سلطانی، ا. 1380. احتمالات و آمار برای علوم و مهندسی. چاپ دوم، انتشارات دانشگاه شیراز، 376 صفحه.
  3. سیدجلالی، س.ع. 1392. مدل­سازی ارزیابی تناسب اراضی و تخمین پتانسیل تولید اراضی برای گندم آبی با استفاده از نظریه‌ی سامانه‌های فازی و زمین‌آمار در دشت گتوند، استان خوزستان. رساله دکتری. دانشگاه تهران. 229 صفحه.
  4. وزارت جهاد کشاورزی. 1399. آمارنامه کشاورزی سال زراعی 1378-1377.معاونت برنامه­ریزی و اقتصادی. دفتر آمار و فناوری اطلاعات وزارت جهاد کشاورزی، تهران.
  5. Armanto, M. 2019. Soil Variability and Sugarcane (Saccharum officinarum L.) Biomass along Ultisol Toposequences. Journal of Ecological Engineering20(7).‏
  6. Arshad, M., Li, N., Zhao, D., Sefton, M., & Triantafilis, J. (2019). Comparing management zone maps to address infertility and sodicity in sugarcane fields. Soil and Tillage Research193, 122-132.‏
  7. Bernstein, L., Clark, R.A., Francois, L.E., Derderian, M.D., 1966. Salt tolerance of NCo varieties of sugar cane. II. Effects of soil salinity and sprinkling on chemical composition. Agron.J. 58, 503–507.
  8. Budong Q, Reinder De J, and G. Samuel. 2009. Multivariate analysis of water-related agroclimatic factors limiting spring wheat yields on the Canadian prairies. Europ. J. Agronomy 30, 140–150
  9. Chipanshi, C., Ripley, E. A., & , R. G., Lawford. 1999. Large-scale simulation of wheat yields in a semi-arid environment using a crop-growth model. Agricultural Systems, 59, 57−66.
  10. Doraiswamy, P. C., Moulin, S., Cook, P. W., & V., Stern. 2003. Crop yield assessment from remote sensing. Photo .
  11. 2013. World agricultural data, http://apps.fao.org/faostat/.grammetric Engineering and Remote Sensing, 69, 665−674.
  12. FAO statistic. 2017. Available: http// faostat.fao.org/site/567/default.aspx.
  13. 1976. A Framework for Land Evaluation.
  14. Food and Agricultural Organization. 1979. Report on agro-ecological zones project. Vol. 1: Methodology and result for Africa. World soil resources report No. 48, FAO, Rome.
  15. Gomathi, R., P.N. 2015. Gururaja Rao, K. Chandran and A. Selvi: Adaptive responses of sugarcane to waterlogging stress: An overview.Sugar Tech., 17, 325–338.
  16. Jaiphong, T., J. Tominaga, K. Watanabe, R. Suwa, M. 2017. Ueno and Y.Kawamitsu: Changes in photosynthesis, growth and sugar content of commercial sugarcane cultivars and Erianthus under flood conditions. Plant Prod. Sci., 20, 126-135.
  17. Khiddir, S. M. 1986. A statistical approach in the use of parametric systems applied to the FAO framework for land evaluation. Ph. D. Thesis, State university of Ghent, Belgium.
  18. Lingle, S.E., Wiedenfeld, R.P., Irvine, J.E., 2000. Sugarcane response to saline irrigation water. J. Plant Nutr. 23,469–486.
  19. Lingle, S.E., Wiegand, C.L., 1997. Soil salinity and sugarcane juice quality. Field Crop Res. 54, 259–26.
  20. Maas, E.V., Hoffman, G.J., 1977. Crop salt tolerance—current assessment. J. Irrig. Drain. Div., ASCE 103, 115–134.
  21. Maselli, F., & , F, Rembold. 2001. Analysis of GAC NDVI data for cropland identification and yield forecasting in Mediterranean African countries. Photogrammetric Engineering and Remote Sensing, 67, 593−60.
  22. Minitab, I. 2014. MINITAB release 17: statistical software for windows. Minitab Inc, USA371.‏
  23. , F.L.M. ., Maas., S.J., Gonz M.P., lez-Dugo., F. Mansilla, N. Rajan, Gavil, P., and J. Donguez. 2012. Monitoring regional wheat yield in Southern Spain using the GRAMI model and satellite imagery. Field Crops Research 130, 145–154
  24. Park, S.J., C.S. Hwang and P.L.G. Vlek 2005. Comparison of adaptive techniques to predict crop yield response under varying soil and land management conditions. Agricultural Systems 85(1): 59-81.
  25. Pinter, P. J., Jackson, R. D., Idso, S. B., & Reginato, R. J. (1981). Multidate spectral reflectance as predictors of yield in water stressed wheat and barley. International Journal of Remote Sensing, 2, 43−48.
  26. Ren, J. Q., Chen, Z. X., Zhou, Q. B., & , H. J, Tang. 2008. Regional yield estimation for winter wheat with MODIS-NDVI data in Shandong, China. International Journal of Applied Earth Observation and Geoinformation, 10, 403−413.
  27. Roetter, R.P., C.T. Hoanh, A.G. Laborte, H. Van Keulen, M.K. Van Ittersum,C. Dreiser, C.A. Van
  28. Diepen, N. De Ridder and H.H. Van Laar 2005. Integration of Systems Network (SysNet) tools for regional land use scenario analysis in Asia. Environmental Modeling & Software 20(3): 291-307.
  29. 1979. Report on the Agro-ecological Zones Projects: Vol. 1 , Methodology and results for Africa. World Soil Resources Report Nº 48, FAO, Rome, 251 pp.
  30. FAO, 1981. Report on the Agro-ecological Zones Project. Vol. 3. Methodology and results for south snd central America. World Soil Resource Report Nº 48/3. FAO, Rome, 237 pp.
  31. Rozeff, N., 1998. Sugarcane irrigation management. In: Rozeff, N., Amador, J.M., Irvine, J.E. (Eds.), South Texas Sugarcane Production Handbook. Texas A&M University Research & Extension Center at Weslaco, and Rio Grande Valley Sugar Growers Inc., Santa Rosa, TX.
  32. Singh, SSingh, S PPathak, A DPandey, N. 2019 Assessment of water logging induced physiobiochemical changes in sugarcane varieties and its association with water logging tolerance.
  33. Arifin, J. 2017. SPSS 24 untuk Penelitian dan Skripsi. Elex Media Komputind.
  34. Sys, C, E,Van Ranst. J. Debaveye. 1991. Land evaluation, Part I and II. GeneralAdmhnstration for development cooperation, Brussels.
  35. Sys, C, E,Van Ranst. J. Debaveye. 1991. Land evaluation, Part I and II. GeneralAdmhnstration for development cooperation, Brussels.
  36. Sys, C, E,Van Ranst. J. Debaveye.1993. Land evaluation, Part III. Crop requirements. General Administration for development cooperation, Brussels.
  37. Sys, C, E,Van Ranst. J. Debaveye.1993. Land evaluation, Part III. Crop requirements. General Administration for development cooperation, Brussels.
  38. Todorovic, M., Albrizio, R., Zivotic, L., Saab, M. T. A., Stöckle, C., & Steduto, P. (2009). Assessment of Aqua Crop, CropSyst, and WOFOST models in the simulation of sunflower growth under different water regimes. Agronomy Journal101(3), 509-521.‏
  39. Toscano, P., Ranieri, R., Matese, A. ., Vaccari, F.P., Gioli , B. A. Zaldeia, M. Silvestri , C. Ronchi,P. La Cava, J.R. Porter and F. Miglietta. 2012. Durum wheat modeling: The Delphi system, 11 years of observations in Italy. Europ. J. Agronomy 43 (2012) 108–118
  40. S. Salinity Laboratory Staff. 1954. Diagnosis and Improvement of Saline and Alkali Soils. USDA Agriculture Handbook No. 60.
  41. Viator, R. P., Jr. P. M. White, A. J. Hale and H. L. 2012. Waguespack: Screening for tolerance to periodic flooding for cane grown for sucrose and bioenergy. Biomass Bioenergy, 44, 56–63.
  42. Wall, L., Larocque, D., & P. M., Leger. 2007. The early explanatory power of NDVI in crop yield modeling. International Journal of Remote Sensing, 29, 2211−2225.
  43. Wiedenfeld, B., Enciso, J., Fipps, G., Robinson, J., 2005. Irrigation of sugarcane in Texas. Texas Cooperative Extension and Texas Agricultural Experiment Station B-6156. p. 15
  44. Wiegand, C., Anderson, G., Lingle, S., Escobar, D., 1996. Soil salinity effects on crop growth and yield—illustration of an analysis and mapping methodology for sugarcane. J. Plant Physiol. 148, 418–424
  45. Wu, D., Q. Yu, C. Lu and H. Hengsdijk 2006. Quantifying production potentials of winter wheat in the North China Plain. European Journal of Agronomy 24(3): 226-235.
  46. Zhu, J., Zeng, W., Ma, T., Lei, G., Zha, Y., Fang, Y., & Huang, J. (2018). Testing and Improving the WOFOST Model for Sunflower Simulation on Saline Soils of Inner Mongolia, China. Agronomy8(9), 172.‏