تأثیر کود مرغی و بیوچار حاصل از آن در دماهای متفاوت روی جذب سطحی فسفر در یک خاک آهکی

نوع مقاله : مقاله پژوهشی

نویسندگان

استادیار پژوهش، بخش تحقیقات خاک و آب، مرکز تحقیقات و آموزش کشاورزی و منابع طبیعی استان بوشهر، سازمان تحقیقات، آموزش و ترویج کشاورزی، بوشهر، ایران

چکیده

بیوچار به عنوان یکی از منابع ماده آلی می‌تواند در جذب و نگهداری فسفر در خاک مؤثر باشد. این آزمایش به منظور بررسی اثر کود مرغی و بیوچار تهیه شده از آن در دماهای200، 300 و 400 درجه سانتیگراد بر ویژگی‌های جذب سطحی فسفر در خاک اجرا شد. کود مرغی و بیوچارهای حاصل از آن با نمونه‌های 400 گرمی خاک مخلوط و در دما و رطوبت مناسب به مدت 90 روز خوابانده شد. هم دمای جذب سطحی فسفر در محدوده غلظتی صفر تا 90 میلی‌گرم در لیتر فسفر به روش پیمانه‌ای اندازه‌گیری و مقدار فسفر جذب سطحی شده محاسبه شد. نتایج نشان داد که روند جذب سطحی فسفر در تمامی تیمارها با افزایش غلظت فسفر کاهش یافت. داده‌های جذب با مدل لانگ مویر برازش داده شده. شیب جذب سطحی فسفر در نمونه‌های تیمار شده با بیوچار در غلظت‌های کم و زیاد فسفر در محلول تعادلی، بطور متوسط به ترتیب به میزان 56 درصد کمتر و 116 درصد بیشتر از تیمار شاهد بود. بیوچار تهیه شده در دماهای 300 و 400 درجه سانتیگراد به ترتیب حداقل و حداکثر تأثیر را بر مقدار شیب و حداکثر جذب سطحی فسفر داشتند. حداکثر مقدار فسفر جذب سطحی شده در تیمارهای بیوچار 300 و 400 به ترتیب 144 و 246 میلی‌گرم در کیلوگرم خاک بود. شیب جذب سطحی فسفر در غلظت کم فسفر محلول تعادلی، در تیمارهای بیوچار 300 و 400 به ترتیب 42/5 و 1/10 و در غلظت زیاد فسفر در محلول تعادلی به ترتیب 50/1 و 59/4 میلی‌گرم در کیلوگرم به ازاء هر واحد تغییر در غلظت فسفر در محلول تعادل بود. رفتار بیوچار 300 در جذب سطحی فسفر نشان‌دهنده امکان بیشتر استفاده از آن در اراضی کشاورزی نسبت به سایر بیوچارها به منظور بهبود قابلیت استفاده فسفر در خاک است، اما رفتار بیوچار 400 نشان‌دهنده امکان استفاده آن در اصلاح خاک‌های آلوده به فسفر می‌باشد.

کلیدواژه‌ها

موضوعات


عنوان مقاله [English]

Effect of Poultry Manure and Its Derived Biochar at Different Temperatures on Phosphorus Adsorption in a Calcareous Soil

نویسندگان [English]

  • Mokhtar Zolfi Bavariani
  • Mehrdad Nowroozi
Assistant Professors, Soil and Water Research Department, Bushehr Agricultural and Natural Resources Research and Education Center, AREEO, Bushehr, Iran
چکیده [English]

Biochar is one of the organic matter sources and it can be effective in improving P adsorption in the soil. This experiment was conducted to investigate the effect of poultry manure (PM) and its derived biochar at temperatures of 200, 300 and 400 °C on P adsorption capacity in a calcareous soil. Poultry manure and its derived biochars were mixed with 400 g of the soil and incubated at appropriate temperature and humidity for 90 days. Phosphorus adsorption isotherms were measured by the modular method at the concentration range of 0 to 90 mg.L-1 of P, and adsorbed P was calculated. The results showed that the P adsorption rate decreased with increasing P concentration in the equilibrium solution in all treatments. Adsorption data were fitted with Long Muir model. In biochar-treated samples, average P adsorption gradient at the low and high P concentrations in equilibrium solution was, respectively, 56% lower and 116% higher than the control. Biochar produced at 300 and 400 °C had, respectively, the minimum and maximum impact on the amount of slope and maximum P adsorption. The maximum adsorbed P in B300 and B400 treatments were 144 and 246 mgkg-1, respectively. At low P concentration in equilibrium solution, P adsorption gradient in B300 and B400 was, respectively, 5.42 and 10.1 mgkg-1 for each unit change of P concentration, and it was 1.50 and 4.59 mgkg-1 at the high P concentration. The behavior of B300 in P adsorption indicates the higher possibility of using it in agricultural lands to improve P availability, compared to the other studied biochars, while B400 behavior indicates the possibility of using it to remediate P-contaminated soil.

کلیدواژه‌ها [English]

  • Phosphorus dynamics
  • Adsorption isotherm
  • Long Muir model
  1. شیروانی، م. و ح. شریعتمداری. 1381. استفاده از همدماهای جذب سطحی در تعیین شاخص‌های ظرفیت بافری و نیاز استاندارد فسفر برخی خاک های استان اصفهان. علوم و فنون کشاورزی و منابع طبیعی، 6 (1)، 121 -129.
  2. واثقی‌راد، ه.، ک. شهبازی و ع. خانمیرزایی. 1394. جذب نیکل در برخی خاک‌های آهکی ایران. نشریه مدیریت خاک و تولید پایدار. 5 (3)، 113-127.
  3. Abe, I., S. Iwasaki, Y. Iwata, H. Kominami, & Y. Kera. (1998). Relationship between production method and adsorption property of charcoal. TANSO. 185: 277-284.
  4. Agbenin, J. O., & Tiessen, H. (1995). Phosphorus sorption at field capacity and soil ionic strength. Kinetics and transformation. Soil Sci. of Am. J. 59, 998-1005.
  5. Amer, F., Mahmoud, A. A., & Sabet, V. (1985). Zeta potential and surface area of calcium carbonate as related to phosphate sorption. Soil Sci. Soc. of Am. J. 49,1137–1142.
  6. Bahi, G. S., & Toor, G. S. (2002). Influence of poultry manure on phosphorus availability and the standard phosphate requirement of crop estimated from quantity–intensity relationships in different soils. Biores. Tech., 85, 317–322.
  7. Bird, I., Ascough, P. L., Young, I. M., Wood, C. V. & Scott, A. C. (2008). X-ray microtomographic imaging of charcoal. J. Archaeol. Sci. 35: 2698–2706.
  8. Cabera, A., Cox, L., Spokas, K., Hermosin, M. C., Cornejo, J., & Koskinen, W. C. (2011). Comparative sorption and leaching study of the herbicides fluometuron and 4-chloro-2-methlylphenoxyacetic acid (MCPA) in a soil amended with biochars and other sorbents, J. Agric. Food Chem. 59, 12550-12560.
  9. Cornelissen G., Gustafsson O., Bucheli T. D., Jonker M. T. O., Koelmans A. A., & Van Noort P. C. M. (2005). Extensive sorption of organic compounds to black carbon, coal, and kerogen in sediments and soils: Mechanisms and consequences for distribution, bioaccumulation, and biodegradation. Environ. Sci. and Tech. 39(18):6881-6895.
  10. Cui, H. J., Wang, M. K., Fu, M. L., & Ci, E. (2011). Enhancing phosphorus availability in phosphorus-fertilized zones by reducing phosphate adsorbed on ferrihydrite using rice straw-derived biochar. J. of Soils and Sediments, 11, 1135-1141.
  11. DeLuca, T. H., Gundale, M. J., MacKenzie, M. D., & Jones, D. L. (2015). Biochar effects on soil nutrient transformations. In Biochar for Environmental Management: Science, Technology and Implementation; Lehmann, J., Joseph, S., Eds.; Routledge: New York, NY, USA, Volume 2, pp. 421–454. ISBN 978-0415704151.
  12. Dhillon, N. S., Dhesi, T. S., & Brar, B. S. (2004). Phosphate sorption-desorption characteristics of some Ustifluents of Punjab. J. of Indian Soc. of Soil Sci., 52, 17-22.
  13. Dume, B., Tessema D. A., Regassa, & Berecha G. (2017). Effects of Biochar on Phosphorus Sorption and Desorption in Acidic and Calcareous Soils. Civil and Environ. Res. 9(5): 10-20.
  14. Gaskin, J. W., Steiner, C., Harris, K., Das, C. & Bibens, B. (2008). Effect of low-temperature pyrolysis conditions on biochar for agricultural use. Transactions of the ASABE 51: 2061-2069.
  15. Gee, G. W. & J. W. Bauder. 1986. Particle-size analysis. PP. 383-410. In: Klute, A. (Ed.), Methods of Soil Analysis. Part 1. Physical and Mineralogical Methods. Soil Sci. Soc. Amer. and Amer. Soc. Agro., Madison, WI.
  16. Gul, S., & Whalen, J. K. (2016). Biochemical cycling of nitrogen and phosphorus in biochar-amended soils. Soil Biol. Biochem, 103, 1–15.
  17. Guo, Y. & D. A. Rockstraw. (2007). Physicochemical properties of carbons prepared from pecan shell by phosphoric acid activation. Biores. Technol., 98, 1513–1521.
  18. Hall, G., S. Woodborne, & M. Scholes. (2008). Stable carbon isotope ratios from archaeological charcoal as palaeoenvironmental indicators. Chemical Geology. 247, 384-400.
  19. Han, Y., Choi B. & Chem X. (2018). Adsorption and Desorption of Phosphorus in Biochar-Amended Black Soil as Affected by Freeze-Thaw Cycles in Northeast China. Sustainability 10, 1574- 1584.
  20. Havlin, J. L., J. D. Beaton, S. L. Tisadale, & W. L. Nelson. 2005. Soil fertility and fertilizers: An introduction to nutrient management.7th Ed. Pearson Education Inc., Upper Saddle River. New Jersey, USA. 515 p.
  21. Jiang,T.Y., J. Jiang, R. K. Xu, & Z. Li. (2012). Adsorption of Pb(II) on variable charge soils amended with rice-straw derived bichar. Chemosphere 89: 249–256 .
  22. Keiluweit, M., P. S. Nico, M. G. Johnson, & M. Kleber. 2010. Dynamic molecular structure of plant biomass-derived black carbon (Biochar). Environ. Sci. Technol. 44: 1247-1253.
  23. Kookana R. S., A. K. Sarmah, L. Van Zwieten, E. Krull, & B. Singh. 2011. Biochar Application to Soil: Agronomic and Environmental Benefits and Unintended Consequences. Adv. in Agron., Volume 112: 103-143.
  24. Kundu, S., & K. Gupta. 2006. Arsenic adsorption onto iron oxidecoated cement (IOCC): regression analysis of equilibrium data with several isotherm model sand their optimization, Chemical Engineering Journal. 122: 93– 106
  25. Lair, G. J., F. Zehetner, Z. H. Khan, & M. H. Gerzabek. (2009). Phosphorus sorption-desorption in alluvial soils of a young weathering sequence at the Danube River. Geoderma 149, 39-44.
  26. Lehmann, J., J. Pereira da Silva, C. Steiner, T. Nehls, W. Zech, & B. Glaser. (2003). Nutrient availability and leaching in an archaeological Anthrosol and a Ferralsol of the Central Amazon basin: fertilizer, manure and charcoal amendments. Plant Soil, 249, 343–357.
  27. Lindsay, W. L., (2001). Chemical Equilibria in Soils. John Wiley & Sons, Inc., New York.
  28. Loeppert, R. H. & D. L. Suarez. 1996. Carbonate and gypsum. PP. 437-474. In: Sparks, D. L. (Ed.). Methods of Soil Analysis. Part 3. Chemical methods, Soil Sci. Soc. Amer. and Amer. Soc. Agro., Madison, WI.
  29. MacDowell, R., & Condron, L. (2001). Influence of soil constituents on soil phosphorus sorption and desorption, Commun. Soil Sci. Plant Anal. 32, 2531-2547.
  30. Mann, C. C. (2002). The real dirt on rainforest fertility, Science, 297, 920–923.
  31. Marschner, H. (1995). Mineral nutrition of higher plants, Academic Press, London.
  32. Morales M. M., N. Comerfoed, I. A. Guerrini, N. P. S. Falcao. & J. B. Reeves. (2014). Sorption and desorption of phosphate on biochar and biochar–soil mixtures. Soil Use and Management.
  33. Murphy J. & P. A. Riley. 1962. Modified single solution method for the determination of phosphate in natural waters. Analytica Chimica Acta, 27: 31–36.
  34. Murphy, P. N. C., & R. J. Stevens. (2010). Lime and gypsum as source measures to decrease phosphorus loss from soils to water. Water, Air and Soil Pollution, 212, 101–111.
  35. Namgay, T., B. Singh, & B. P. Singh. (2010). Influence of biochar application to soil on the availability of As, Cd, Cu, Pb, & Zn to maize (Zea mays L). Australian Journal of Soil Research, 48, 638–647.
  36. Novak, J. M., W. J. Busscher, D. L. Laird, M. Ahmedna, D. W. Watts, & M. A. S. Niandou,. (2009). Impact of biochar amendment on fertility of a southeastern coastal plain soil. Soil Sci., 174, 105–112.
  37. Ohno, T. & A. Amirbahman. (2010). Phosphorus availability in boreal forest soils: a geochemical and nutrient uptake modeling approach. Geoderma, 155, 46–54.
  38. Olsen, S. R., & L. E. Sommer. (1982). Phosphorus. P.403-430. In: Page et al. (Ed), Methods of Soil Analysis: Part 2., 2nd ed., Agron. Monogr. 9., ASA and SSSA, Madison, WI.
  39. Parkinson, J. A.; & S. E. Allen. (1975). A wet oxidation procedure suitable for determination of nitrogen and mineral nutrients in biologicalmaterial. Commun. Soil Sci. Plant Anal., 6, 1–11
  40. Pena, F., & J. Torrent. (1990). Predicting phosphate sorption in soils of Mediterranean regions. Fertilizers Research, 23, 173–179.
  41. Raghothama, K. G. & A. S. Karthikeyan. (2005). Phosphate acquisition. Plant Soil, 274, 37- 48.
  42. Rahman, M. M., A. Pal, K. Uddin, K. Thu, & B. Saha. (2018). Statistical Analysis of Optimized Isotherm Model for Maxsorb III/Ethanol and Silica Gel/Water Pairs. Journal of Novel Carbon Resource Sciences & Green Asia Strategy, 5 (4), 1-12.
  43. Rayment, G. E., & F. R. Higginson. 1992. Australian Laboratory Handbook of Soil and Water Chemical Methods, Inkata Press, Melbourne 1992, p. 330
  44. Rhoades, J. D. (1996). Salinity: electrical conductivity and total dissolved solids, PP. 417-435. In: Methods of Soil Analysis. Part 3. Chemical Methods. Soil Sci. Soc. Amer. and Amer. Soc. Agron., Madison, WI
  45. Shen, J., L. Yuan, J. Zhang, H. Li, Z. Bai, X. Chen, W. Zhang, & F. Zhang. (2001). Phosphorus dynamics: From soil to plant. Plant Physiol., 156, 997–1005.
  46. Singh, B., B. P. Singh, & A. L. Cowie. (2010). Characterisation and evaluation of biochars for their application as a soil amendment. Aust. J. Soil Res. 48: 516–525.
  47. Solis, P. & J. Torrent. (1989). Phosphate sorption by calcareous Vertisols and Inceptisols of Spain. Soil Sci. Soc. of Amer. J., 53, 456-459.
  48. Summer, M. E. & W. P. Miller. (1996). Cation exchange capacity and exchange coefficient. PP. 1201–1230. In: Methods of Soil Analysis. Part 3. Chemical Methods. Sparks, D. L. (Ed.). Soil Sci. Soc. Amer. & Amer. Soc. Agron., Madison, WI.
  49. Takaya, C. A., L. A. Fletcher, S. Singh, K. U. Anyikude, & B. Ross. (2016). Phosphate and ammonium sorption capacity of biochar and hydrochar from different wastes. Chemosphere 145, 518-527  
  50. Thomas, G. W. (1996). Soil pH and soil acidity: 475-490. In: Spark, D.L. (Ed.), Methods of soil analysis. Part 3, Chemical Methods. SSSA. Madison, WI.
  51. Vance C. P., C. Uhde‐Stone & L. Allan. (2003). Phosphorus acquisition and use: critical adaptations by plants for securing a nonrenewable resource. New Phytologist, 157: 423-447.
  52. Walky A. & I. A. Black. (1934). An examination of Degtjareff method for determining soil organic matter and a proposed modification of the chromic acid in soil analysis. 1. Experimental. Soil Science, 79: 459-465.
  53. Wang T, M. C. Arbestain, M. Hedley, & P. Bishop. (2012). Predicting phosphorus bioavailability from high-ash biochars. Plant and Soil. 357:173-187.
  54. Xu, G., H. B. Shao, & J. N. Sun. (2013). What is more important for enhancing nutrient bioavailability with biochar application into a sandy soil: direct or indirect mechanism? Ecological Engine., 52, 119–124.
  55. Xu, G., J. N. Sun, H. B. Shao, & S. X. Chang. (2014). Biochar had effects on phosphorus sorption and desorption in three soils with differing acidity. Ecological Engine., 62, 54-60
  56. Xia, Y.; Y. Lou, C. Yang, & Y. Liang. (2002). Characteristics of phosphate adsorption and desorption in Paddy soils. Sci. Agric. Sin, 35, 1369–1374.