ارزیابی اثر حجم ترافیک بر آلودگی و خطر بالقوه بوم‌شناختی عناصر روی، سرب و نیکل در خاک‏های حاشیه برخی جاده‏های برون شهری همدان

نوع مقاله : مقاله پژوهشی

نویسندگان

1 دکتری تخصصی محیط‌زیست، دانشکده علوم پایه، واحد همدان، دانشگاه آزاد اسلامی، همدان، ایران

2 استاد علوم محیط‌زیست، دانشکده علوم پایه، واحد همدان، دانشگاه آزاد اسلامی، همدان، ایران

چکیده

انتشارات حاصل از ترافیک یکی از بزرگترین منابع آلودگی فلزات سنگین است که منجر به عدم تعادل بوم‏شناختی در خاک کنار جاده‏ای می‌شود. لذا، این پژوهش با هدف تعیین محتوی، ارزیابی آلودگی و خطر بالقوه بوم‌شناختی فلزات سنگین روی، سرب و نیکل در خاک‏های حاشیه برخی جاده‏های برون شهری همدان در سال 1398 انجام شد. بدین منظور، 63 نمونه خاک سطحی در طول 700 متر از یک قطعه 0/9 کیلومتری از جاده‏های گلتپه، رزن و کرمانشاه جمع‏آوری شد. پس از آماده‏سازی نمونه‏ها ، محتوی عناصر در آن‌ها به‌روش طیف‌سنجی نوری پلاسمای جفت‌شده القایی (ICP-OES) اندازه‌گیری شد. همچنین، فاکتور آلودگی (CF)، شاخص زمین‏انباشتگی (Igeo) و خطرپذیری بالقوه بوم‌شناختی تجمعی (RI) محاسبه شد. پردازش آماری داده‏ها نیز با استفاده از نرم‏افزار SPSS انجام یافت. بیشینه میانگین محتوی عناصر روی، سرب و نیکل در نمونه‏های خاک به‏ترتیب با 24/3 ± 122، 730/0 ± 4/26 و 360/0 ± 2/22 میلی‏گرم در کیلوگرم مربوط به ایستگاه‏های رزن، کرمانشاه و رزن و بیان‏گر تأثیر حجم ترافیک بود. با استناد به همبستگی مثبت و معنی‏دار بین عناصر روی و سرب و روی و نیکل نمونه‏های خاک به‏ترتیب در سطح معنی‏داری برابر با 05/0 و 01/0 می‌توان گفت که این عناصر منابع مشترک دارند. نتایج محاسبه شاخص‏های CF، Igeo و RI بیان‏گر کیفیت قابل ‏قبول خاک در ایستگاه‏های مورد مطالعه و عدم بروز مخاطره بوم‏شناختی بود؛ همچنین، میانگین مقادیر محاسبه شده عامل خطرپذیری بالقوه بوم‌شناختی احتمالی (Er) برای عناصر مورد مطالعه در نمونه‏های خاک دارای روند کاهشی ‏بصورت سرب > نیکل > روی بود. نتایج بدست آمده نشان داد که پایش منظم غلظت و ارزیابی خطرات بوم‏شناختی آلاینده‏های فلزی  به منظور مدیریت و حفاظت خاک ضروری است
 

کلیدواژه‌ها

موضوعات


عنوان مقاله [English]

Evaluation of the Impact of Traffic Volume on Pollution and Potential Ecological Risk of Zn, Pb, and Ni in Suburban Roadside Soils in Hamedan, Iran

نویسندگان [English]

  • Nayereh Sadat Hosseini 1
  • Soheil Sobhan Ardakani 2
1 PhD., Dept. of the Environment, College of Basic Sciences, Hamedan Branch, Islamic Azad University, Hamedan, Iran
2 Professor, Dept. of the Environment, College of Basic Sciences, Hamedan Branch, Islamic Azad University, Hamedan, Iran
چکیده [English]

Traffic emissions are one of the largest sources of heavy metal pollution, leading to ecological imbalances in roadside soils. This study was conducted to determine the content and assess the pollution and potential ecological hazard of Zn, Pb, and Ni in some suburban roadside soils of Hamadan, in 2019. In so doing, 63 surface soil samples were collected along 700 m from a 9.0 km section of Goltepeh, Razan, and Kermanshah roads. After samples preparation, content of the elements was determined by induced coupled plasma optical spectroscopy (ICP-OES). Also, pollution factor (CF), geo-accumulation index (Igeo), and cumulative potential ecological risk (RI) were calculated. Statistical analysis was performed using SPSS software. The maximum mean content of Zn, Pb and Ni in the soil samples was 122 ± 3.24, 26.4 ± 0.730, and 22.2 ± 0.360 mg/kg for, respectively, Razan, Kermanshah, and Razan and indicated the effect of traffic intensity. The positive and significant correlation between Zn and Pb (p <0.05) and Zn and Ni (p < 0.01) in the soil samples point to the common sources of these elements. The results of calculating CF, Igeo and RI indices showed acceptable soil quality in the studied stations and fell in the category of no ecological hazard. Moreover, the average values ​​of the calculated monomial potential ecological risk factor (Er) for the studied elements had a decreasing trend in the following order Pb > Ni > Zn. From the results of the current study, it may be concluded that regular monitoring of concentrations and assessment of ecological hazards of metal pollutions is necessary in order to manage and protect the soil quality.
 

کلیدواژه‌ها [English]

  • Heavy metals
  • Pollution factor
  • Geo-accumulation index
  • Soil quality
  1. بهنام، و.، ا. غلامعلی‎زاده آهنگر، م. رحمانیان و ا. بامری. 1397. ارزیابی آلودگی و تغییرات مکانی روی، مس و نیکل در خاک‏های مناطق خشک مسیر زابل- زاهدان. پژوهش‏های حفاظت آب و خاک، دوره 25، شماره 5، 216-201.
  2. پرداختی، ع. و ف. زاهد. 1397. ارزیابی شاخص‏های آلودگی و ریسک اکولوژیکی مربوط به فلزات سنگین در خاک‏های اطراف جاده‏های برون شهری ایران. مطالعات علوم محیط‏زیست، دوره 3، شماره 3، 781-769.
  3. حسنوند. ه.، ف. قاسمی آقباش، ع. سلگی و ا. پژوهان. 1397. اثرهای فاصله از جاده بر تجمع فلزات سنگین در خاک و برگ بلوط ایرانی (Quercus brantii) در بزرگراه الشتر – خرم‏آباد. پژوهش و توسعه جنگل، دوره 4، شماره 1، 41-29.
  4. حضرت‌زاده، ش. و س. سبحان اردکانی. 1397. مطالعه آلودگی به روی، سرب، کادمیم و مس خاک سطحی بوستان­های شهر همدان. پژوهش‌های خاک، دوره 32، شماره 3، 413-399.
  5. خالقی، ش.، آ. صفادوست و ز. کلاه‏چی. 1398. وضعیت آلودگی یک زمین کشاورزی به برخی فلزات سنگین در حاشیه بزرگراه اراک-قم. پژوهش‎های خاک، دوره 33، شماره 3، 400-387.
  6. رشید شمالی، آ. و ح. خداوردی‏لو. 1391. آلودگی خاک‏ها و گیاهان پیرامون بزرگراه ارومیه- سلماس به برخی فلزهای سنگین. دانش آب و خاک، دوره 22، شماره 3، 170-157.
  7. سلیمی، م.، م.ع. بهمنیار، م. قاجار سپانلو، و آ. محمدی. 1394. تغییرات سرب و کادمیوم خاک و گیاه کلزا در حاشیه جاده ساوه- همدان. دانش آب و خاک، دوره 25، شماره 2، 205-193.
  8. قنواتی، ن.، ا. نظرپور و ت. بابایی نژاد. 1397. ارزیابی خطر اکولولوژیکی و بهداشتی برخی فلزات سنگین در خاک کنار جاده‌ای شهر اهواز. مجله دانشکده بهداشت و انستیتو تحقیقات بهداشتی، دوره 16، شماره 4، 390-373.
  9. محمدی‏گلنگش، م.، ر. قاسمی ذوالپیرانی و م. نعیمی جوبنی. 1397. الگوی پراکنش فلزات سنگین در خاک‏های سطحی کنار جاده‏ای در اطراف آزادراه رشت- قزوین. سلامت و بهداشت، دوره 9، شماره 3، 258-250.
  10. محمدی‏گلنگش، م.، ر. قاسمی ذوالپیرانی و م. نعیمی جوبنی. 1399. ارزیابی آلودگی خاک‌های کنار جاده‌ای به فلزات‌ سنگین (سرب، نیکل، مس، روی) در جاده قدیم رشت-قزوین در استان گیلان. سلامت و محیط‎زیست، دوره 13، شماره 3، 420-409.
  11. محمدمرادی، ب.، س. سبحان اردکانی و م. چراغی. 1396. ارزیابی شاخص مخاطره بوم‌شناختی فلزات سنگین در خاک سطحی بوستان‏های شهری تهران. سلامت و محیط‌زیست، دوره 10، شماره 4، 441-429.
  12. Acar, R.U., and C., Özkul. 2020. Investigation of heavy metal pollution in roadside soils and road dusts along the Kütahya–Eskişehir Highway. Arabian Journal of Geosciences. 13(5): 1–11.
  13. Achiba, W.B., N., Gabteni, A., Lakhdar, G.D., Laing, M., Verloo, N., Jedidi, and et al. 2009. Effects of 5-year application of municipal solid waste compost on the distribution and mobility of heavy metals in a Tunisian calcareous soil. Journal of Agriculture, Ecosystems & Environment. 130(3-4): 156–163.
  14. Adamiec, E. 2017. Chemical fractionation and mobility of traffic-related elements in road environments. Environmental Geochemistry and Health. 39: 1457–1468.
  15. Ahmed, F., A.N.M., Fakhruddin, M.D.T., Imam, N., Khan, T.A., Khan, M.M., Rahman, and et al. 2016. Spatial distribution and source identification of heavy metal pollution in roadside surface soil: a study of Dhaka Aricha highway Bangl. Ecological Processes. 5: 1–16.
  16. Ajimone-Marsan, F., M., Biasioli, T., Kralj, H., Greman, C.M., Davidson, A.S., Hursthouse, and et al. 2008. Metals in particle-size fractions of the soils of five European cities. Environmental Pollution. 152: 73–81.
  17. Amouei, A., A., Cherati, and D., Naghipour. 2018. Heavy metals contamination and risk assessment of surface soils of Babol in northern Iran. Health Scope. 7(1): e62423.
  18. Anwar, S., A., Naz, M.Y., Ashraf, and A., Malik. 2020 Evaluation of inorganic contaminants emitted from automobiles and dynamics in soil, dust, and vegetations from major highways in Pakistan. Environmental Science and Pollution Research. 27: 32494–32508.
  19. Baycu, G., D., Tolunay, H., Özden, and S., Günebakan. 2006. Ecophysiological and seasonal variations in Cd, Pb, Zn and Ni concentrations in urban deciduous trees in Istanbul. Environmental Pollution. 143: 545–554.
  20. Bernardino, C.A.R., C.F., Mahler, R.E., Santelli, A., Freire, B., Braz, and L., Novo. 2019. Metal accumulation in roadside soils of Rio de Janeiro, Brazil: impact of traffic volume, road age, and urbanization level. Environmental Monitoring and Assessment. 191(3): 156.
  21. Chang, S.H., K.S., Wang, H.F., Chang, W.W., Ni, B.J., Wu, R.H., Wong, and et al. 2009. Comparison of the source identification of metals in road dust and soil. Soil and Sediment Contamination. 18: 669–683.
  22. Davodpour, R., S., Sobhanardakani, M., Cheraghi, N., Abdi, and B.Lorestani. 2019. Honeybees (Apis mellifera) as a potential bioindicator for detection of toxic and essential elements in the environment (Case study: Markazi Province, Iran). Archives of Environmental Contamination and Toxicology. 77(3): 344–358.
  23. Dayani, M., and J., Mohammadi. 2010. Geostatistical assessment of Pb, Zn and Cd contamination in near-surface soils of the urban-mining transitional region of Isfahan, Iran. Pedosphere. 20: 568-577.
  24. Debnath, B., W.S., Singh, and , Manna. 2019. Sources and toxicological effects of lead on human health. Indian Journal of Medical Specialities. 10: 66–71.
  25. Eid, E.M., K.H., Shaltout, and M.A.A.T., El-Sheikh. 2012. Seasonal courses of nutrients and heavy metals in water, sediment and above-and below- ground Typha domingensis biomass in Lake Burullus (Egypt): perspectives for phytoremediation. Flora. 207: 783–794.
  26. El-Radaideh, N.M., and A.A.A.K., Al-Taani. 2018. Geo-environmental study of heavy metals of the agricultural highway soils, NW Jordan. Arabian Journal of Geosciences. 11(24): 1–14.
  27. Gall, J.E., S., Boyd, N., Rajakaruna. 2015. Transfer of heavymetals through terrestrial food webs: a review. Environmental Monitoring and Assessment. 187(4): 1–21.
  28. Galal, T.M., and H.S., Shehata. 2015. Bioaccumulation and translocation of heavy metals by Plantago major L. grown in contaminated soils under the effect of traffic pollution. Ecological Indicators. 48: 244–251.
  29. Gee, G.W., and D. Or. 2002. Particle-size analysis. In: Dane, J.H., Topp, G.C. (Eds.): Methods of Soil Analysis. Part 4. SSSA Book Series No. 5. SSSA, Madison, WI. 255–293.
  30. Guan, Z.H., X.G., Li, and L. Wang. 2018. Heavy metal enrichment in roadside soils in the eastern Tibetan Plateau. Environmental Science and Pollution Research. 25: 7625–7637
  31. Eqani, S.A.M.A.S., Z.I., Tanveer, C., Qiaoqiao, A., Cincinelli, Z., Saqib, S.I., Mulla, and et al. 2018. Occurrence of selected elements (Ti, Sr, Ba, V, Ga, Sn, Tl, and Sb) in deposited dust and human hair samples: implications for human health in Pakistan. Environmental Science and Pollution Research. 25: 12234–12245.
  32. Göde, C., M.L., Yola, A., Yilmaz, N., Atar, and S., Wang. 2017 A novel electrochemical sensor based on calixarene functionalized reduced graphene oxide: application to simultaneous determination of Fe(III), Cd(II) and Pb(II) ions. Journal of Colloid and Interface Science. 508: 525–531.
  33. Hosseini, N.S., , Sobhanardakani, M., Cheraghi, B., Lorestani, and H., Merrikhpour. 2020. Heavy metal concentrations in roadside plants (Achillea wilhelmsii and Cardaria draba) and soils along some highways in Hamedan, west of Iran. Environmental Science and Pollution Research. 27(12): 13301–13314.
  34. Jankowski, K., E.A., Malinowska, G., Ciepiela, J., Jankowska, B., Wiśniewska Kadżajan, and J., Sosnowski. 2019. Lead and cadmium content in grass growing near an expressway. Archives of Environmental Contamination and Toxicology. 76(1): 66–75.
  35. Jeddi, K., and M., Chaieb. 2018. Evaluation of the potential of Erodium glaucophyllum L. for phytoremediation of metal-polluted arid soils. Environmental Science and Pollution Research. 25: 36636–36644
  36. Jiang, Y., S., Chao, J., Liu, , Yang, Y., Chen, A., Zhang, and et al. 2017. Source apportionment and health risk assessment of heavy metals in soil for a township in Jiangsu Province, China. Chemosphere. 168: 1658–1668.
  37. Khalid, N., A., Noman, M., Aqeel, A., Masood, and A., Tufail. 2019 Phytoremediation potential of Xanthium strumarium for heavy metals contaminated soils at roadsides. International Journal of Environmental Science and Technology. 16: 2091–2100.
  38. Khalid, N., M.S., Hussain, H., Young, M., Ashraf, M., Hameed, and R., Ahmad. 2018. Lead concentrations in soils and some wild plant species along two busy roads in Pakistan. Bulletin of Environmental Contamination and Toxicology. l00(2): 250–258.
  39. Kocher, B., G., Wessolek, and H., Stoffregen. 2005 Water and heavy metal transport in roadside soils. Pedosphere. 15(6): 746–753.
  40. Mico, C., Recatala, L., Peris, M., and Sanchez, J. 2006. Assessing heavy metal sources in agricultural soils of an European Mediterranean area by multivariate analysis. Chemosphere. 65: 863-872.
  41. Mohammadi, M.J., A.R., Yari, M., Saghazadeh, S., Sobhanardakani, S., Geravandi, A., Afkar, and et al. 2018. A health risk assessment of heavy metals in people consuming Sohan in Qom, Iran. Toxin Reviews. 37(4): 278–286.
  42. Noman, A., Q., Ali, J., Maqsood, N., Iqbal, M.T., Javed, N., Rasool, and et al. 2018. Deciphering physio-biochemical, yield, and nutritional quality attributes of water-stressed radish (Raphanus sativus L.) plants grown from Zn-Lys primed seeds. Chemosphere.195: 175–189.
  43. Radziemska, M., and J., Fronczyk. 2015. Level and contamination assessment of soil along an expressway in an ecologically valuable area in Central Poland. International Journal of Environmental Research and Public Health. 12(10): 13372–13387.
  44. Sevik, H., H.B., Ozel, M., Cetin, H.U., Özel, and T., Erdem. 2019 Determination of changes in heavy metal accumulation depending on plant species, plant organism, and traffic density in some landscape plants. Air Quality, Atmosphere & Health. 12(2): 189–195.
  45. Singh, A., R.K., Sharma, M., Agrawal, and F.M., Marshall. 2010. Risk assessment of heavy metal toxicity through contaminated vegetables from waste water irrigated area of Varanasi, India. Tropical Ecology. 51(2): 375–387.
  46. Shahid, M., C., Dumat, S., Khalid, E., Schreck, T., Xiong, and N.K., Niazi. 2017. Foliar heavy metal uptake, toxicity and detoxification in plants: a comparison of foliar and root metal uptake. Journal of Hazardous Materials. 325: 36–58.
  47. Skrynetska, I., J., Karcz, G., Barczyk, M., Kandziora-Ciupa, R., Ciepał, A., and Nadgórska-Socha. 2019. Using Plantago major and Plantago lanceolata in environmental pollution research in an urban area of Southern Poland. Environmental Science and Pollution Research. 26: 23359–23371.
  48. Sobhanardakani, S. 2018a. Human health risk assessment of potentially toxic heavy metals in the atmospheric dust of city of Hamedan, west of Iran. Environmental Science and Pollution Research. 25(28): 28086–28093.
  49. Sobhanardakani, S. 2018b. Ecological risk assessment of heavy metals in the atmospheric dry deposition of Hamedan City. Journal of Kermanshah University of Medical Sciences, 22(1): e69642.
  50. Sobhanardakani, S. 2019. Ecological and human health risk assessment of heavy metals content of atmospheric dry deposition, a case study: Kermanshah, Iran. Biological Trace Element Research. 187(2): 602–610.
  51. Szwalec, A., P., Mundała, , Kędzior, and J., Pawlik. 2020. Monitoring and assessment of cadmium, lead, zinc and copper concentrations in arable roadside soils in terms of different traffic conditions. Environmental Monitoring and Assessment. 192(3): 155.
  52. Tepanosyan, G., L., Sahakyan, O., Belyaeva, and A., Saghatelyan. 2016. Origin identification and potential ecological risk assessment of potentially toxic inorganic elements in the topsoil of the city of Yerevan, Armenia. Journal of Geochemical Exploration. 167: 1–11.
  53. Walkley, A., & Black, I. A. 1934. An examination of the Degtjareff method for determining soil organic matter, and a proposed modification of the chromic acid titration method. Soil Science, 37(1), 29-38.
  54. Wang, H., L., Nie, , Xu, M., Li, and Y., Lv. 2018. Traffic-emittedmetal status and uptake by Carex meyeriana Kunth and Thelypteris palustris var. pubescens Fernald growing in roadside turfy swamp in the Changbai Mountain area, China. Environmental Science and Pollution Research. 25: 18498–18509.
  55. Wei, B., and L., Yang. 2010. A review of heavy metal contaminations in urban soils, urban road dusts and agricultural soils fromChina. Microchemical Journal. 94(2): 99–107.
  56. Werkenthin, M., B., Kluge, and G., Wessolek. 2014. Metals in European roadside soils and soil solution a review. Environmental Pollution. 189: 98–110.
  57. Wiseman, C.L.S., F., Zereini, and W., Püttmann. 2013. Traffic-related trace element fate and uptake by plants cultivated in roadside soils in Toronto, Canada. Science of the Total Environment. 442: 86–95.
  58. Wong, J., K., Li, L., Zhou, and A., Selvam. 2007. The sorption of Cd and Zn by different soils in the presence of dissolved organic matter from sludge. Geoderma. 137(3- 4): 310–317.
  59. Zanello, S., V.F., Melo, and N., Nagata. 2018. Study of different environmental matrices to access the extension of metal contamination along highways. Environmental Science and Pollution Research. 25(6): 5969–5979.