تأثیر شرایط ماندابی بر روند تغییرات شیمیایی و الکتروشیمایی در محلول خاک‌های آهکی

نوع مقاله : مقاله پژوهشی

نویسنده

استادیار بخش تحقیقات خاک و آب، مرکز تحقیقات و آموزش کشاورزی و منابع طبیعی مازندران، سازمان تحقیقات، آموزش و ترویج کشاورزی، ساری، ایران

چکیده

به طور کلی، باران‌های شدید و سیلاب در برخی از مناطق جهان، اغلب منجر به مانداب شدن کوتاه مدت خاک می‌شود. در سال­های اخیر، این سیلاب­ها و شرایط ماندابی در استان­های شمالی و جنوبی ایران نیز یکی از چالش‌های مهم بوده که به طور مستقیم و غیر مستقیم بر حلالیت و قابلیت استفاده بیشتر عناصر غذاییدر خاک تأثیر گذاشته است. برای بررسی اثر پدیده ماندابی، هفت خاک از باغ‌های مناطق مختلف شرق مازندران (قائم‌شهر، ساری و نکا) انتخاب شد و در یک آزمایش گلدانی به مدت 70 روز متوالی تحت شرایط ماندابی پیوسته ‌قرار داده شد. سپس، روند تغییرات پتانسیل اکسایش- کاهش (Eh)، قابلیت هدایت الکتریکی (EC)، pH، غلظت عناصر کلسیم (Ca2+)، پتاسیم (K+)، سدیم (Na+) و آهن (Fe2+ وFe3+) این خاک‌ها در شرایط ماندابی بررسی شد. نتایج نشان داد که میانگین Eh خاک­ها، دو روز پس از اعمال تنش به حداقل رسید، در روز سوم مقداری افزایش داشت، و سپس مجددا شروع به کاهش کرد و این روند کاهشی تا پایان دوره ادامه داشت به طوری که از 552 میلی ولت در شروع غرقاب به 99- میلی ولت در پایان دوره رسید. نیز، میانگین pH محلول خاک در 10 روز پس از مانداب از 8/7 به حدود 88/6 رسید و سپس افزایش یافت و به مقدار نسبتاً پایداری (حدود 05/7) رسید. میانگین EC خاک­ها نیز با شروع مانداب افزایش یافت و به حدود 43/2 دسی زیمنس بر متر رسید و سپس به 13/2 کاهش یافت و در روز دهم به حداکثر مقدار (حدود 09/3 دسی زیمنس بر متر) رسید و پس از آن به تدریج با روندی کاهشی به مقدار نسبتاً پایداری رسید. غلظت کلسیم، پتاسیم و سدیم در محلول خاک پس از اعمال شرایط ماندابی افزایش یافت و در فاصله زمانی دو روز به حداکثر رسید، سپس به تدریج با روندی کاهشی به مقدار نسبتا ثابتی رسید. غلظت آهن در روز اول پس از اعمال شرایط ماندابی حدود 95/1 میلی­گرم در لیتر بود و در روز دهم به 67/6 میلی­گرم در لیتر افزایش یافت سپس مجددا کاهش یافت به طوری که در روز بیستم به 27/4 میلی­گرم در لیتر رسید و پس از آن به تدریج با روندی افزایشی در پایان دوره به 98/9 میلی­گرم در لیتر رسید. بر اساس نتایج این پژوهش و با توجه به روند تغییرات شوری و غلظت عناصر غذایی در محلول خاک، پیشنهاد می شود که از مصرف کودهای شیمیایی (خاکی و محلول­پاشی) پس از رخداد مانداب اجتناب شود. همچنین با توجه به روند تغییرات Eh محلول خاک، تداوم مانداب به بیشتر از 5 روز می­تواند منجر به شرایط نسبتاً کاهشی در خاک و ایجاد خسارت در درختان میوه شود. بنا بر این، خارج کردن آب اضافی در این فاصله زمانی توصیه می­شود.

کلیدواژه‌ها

موضوعات


عنوان مقاله [English]

Effect of Waterlogging Conditions on Some Chemical and Electrochemical Changes in Soil Solution of Calcareous Soils

نویسنده [English]

  • ali asadi kangarshahi
Assistant Professor of Soil and Water Research Department, Mazandaran Agricultural and Natural Resources Research and Education Center, AREEO, Sari, Iran
چکیده [English]

In recent years, floods and waterlogging conditions in the northern and southern provinces of Iran have become important challenges, which directly and indirectly affect the solubility and availability of most of the soil nutrients. To investigate the effects of waterlogging, seven soils were selected from the orchards of different regions of East Mazandaran (Ghaemshahr, Sari, and Neka). In a pot experiment, the soils were placed under continuous waterlogging conditions for 70 consecutive days, and the trend of changes in oxidation-reduction potential (Eh), electrical conductivity (EC), pH, concentrations of Ca2+, K+, Na+ and iron (Fe2+ and Fe3+) of these soils were studied. The results showed that the mean Eh values of soils dropped within 2 days of waterlogging, then increased slightly in the third day, and then began to drop again, and this drop trend continued until the end of the period, from 552 mV at the beginning of waterlogging and reached -99 mV at the end of the period. The average soil pH decreased from 7.8 to 6.88 after 10 days of waterlogging, and then increased and reached a relatively stable equilibrium (about 7.05). The average EC values of soils, increased after the first day of waterlogging, then, declined to 2.13 dS/m, and again increased to the maximum value (about 3.09 dS/m) after 10 days. The concentration of Ca2+, K+, and Na+ in the soil solution increased after waterlogging and reached the maximum within 2 days, then gradually decreased and reached a relatively constant amount. The concentration of Fe within the first days after waterlogging was 1.95 mg/L, increased to 6.67 mg/L after 10 days, then decreased to 4.27 mg/L after 20 days, and eventually increased to 9.98 mg/L at the end of the period (70 days). Based on the results of this study and considering the trend of EC changes and concentrations of nutrients in soil solution, application of chemical fertilizers to soils should be avoided after waterlogging occurrence. Also, due to the changes in soil Eh, the continuation of waterlogging for more than 5 days can lead to relatively anaerobic conditions in the soil and damage to fruit trees, therefore, drainage of excess water is recommended.

کلیدواژه‌ها [English]

  • Electrical conductivity
  • Redox potential
  • Soluble nutrients
  • Waterlogging time
  • Drainage
  1. اسدی کنگرشاهی، علی و نگین اخلاقی امیری. 1397. مدیریت احداث باغ پایدار مرکبات. انتشارات آموزش و ترویج کشاورزی. تهران، ایران. صفحه 201.
  2. اسدی کنگرشاهی، علی و نگین اخلاقی امیری. 1393. تغذیه پیشرفته و کاربردی مرکبات. جلد اول، انتشارات آموزش و ترویج کشاورزی. تهران، ایران. صفحه 321.
  3. اسدی کنگرشاهی، علی، غلامرضا ثواقبی، محمود سمر و محسن فرحبخش. 1392. امکان استفاده از فلورسنس کلروفیل برای ارزیابی تحمل تعدادی از پایه­های مرکبات به تنش ماتداب. مجله به زراعی کشاورزی، جلد 15، شماره 4، دانشگاه تهران، تهران، ایران،صفحه 78- 65..
  4. ایزدپناه، بیژن. 1355. مطالعات نیمه تفضیلی و اجمالی خاکشناسی و طبقه­بندی اراضی استان مازندران. نشریه شماره492. مؤسسه تحقیقات خاک و آب، سازمان تحقیقات و آموزش کشاورزی، تهران، ایران.
  5. Asadi Kangarshahi, A. & Akhlaghi Amiri, N. 2008. Effect of short-term water logging on the growth and yield of citrus. The 11th International Citrus Congress, Wuhan, China.
  6. Bahmaniar, M.A. 2008. The influence of continuous rice cultivation and different waterlogging periods on the morphology, clay mineralogy, Eh, pH and K in paddy soils. Eurasian Soil Sci. 41:87–92.
  7. Bashour, I. & Sayegh, A.A. 2007. Methods of Analysis for Soils of Arid and Semi-Arid Regions. Food and Agriculture Organization of the United Nations, Rome. P. 49-53.
  8. Boivin, P., Favre , F., Hammecker, C., Maeght, J.L.,  Delariviere, J., Poussin, J.C.  & Woperris, M.C.S. 2002. Processes driving soil solution chemistry in a flooded rice-cropped vertisol: Analysis of long-time monitoring data. Geoderma. 110: 87 - 107.
  9. Bourrie, G., Trolard, F., Genin, J.M.R., Jafrezic, A., Maitre, V., Abdelmoula, M. 1999. Iron control by equilibria between hydroxy-Green Rusts and solutions in hydromorphic soils. Geochim Cosmochim Acta. 63:417–427.
  10. Dat, J. F., Capelli, N., Foizer, H., Bourgeade, P. & Badot, P.M. 2004. Sensing and signaling during plant flooding. Plant Physiol Biochem. 42: 273-282.
  11. Domingo, R., Perez – Paster, A. & Ruiz – Sanchez, C. 2002. Physiollogical responses of apricot plants grafted on two different rootstocks to flooding condition. J. Plant Physiol. 159: 725 – 732.
  12. Ethan, S. 2015. Effect of flooding on chemistry of paddy soils: a review. Int. J. Innov. Sci. Eng. Tech 2:414–420.
  13. Farrell, R.E., Swerhone, G.D.W., and van Kessel, C. 1991. Construction and evaluation of a reference electrode assembly for use in monitoring in situ soil redox potentials. Commun. Soil Sci. Plant Anal. 22: 1059-68.
  14. Gee, G.W. & Bauder, J.W. 1986. Particle size analysis. P. 383 – 411. In: A. Klute, (ed.) Methods of Soil Analysis. Part1. SSSA, Madison, WI.
  15. Giesler, R., Lundstrom, U.S. & Grip, H. 1996. Comparison of soil solution chemistry assessment using zero-tension lysimeters or centrifugation. Euro. J. Soil Sci. 47: 395 – 405.
  16. Ibrahim, S.A., Siam, H.S., Rashad, M.A., Holah, S.S., Abou Zeid, S.T. 2011. Influence of soil moisture regimes on some nutrients concentration in soil solution collected from different soils through the growth period of rice plants. Int J. Acad Res. 3:711–719.
  17. Kirk, G.J.D., Solivas, J.L. & Alberto, M.C. 2003. Effect of flooding and redox conditions on solute diffusion in soil. Europ. J. Soil Sci. 54: 617 - 624.
  18. Kirk, G, 2004. The biogeochemistry of waterlogged soils. Wiley, New York.
  19. Larson, K.D., Graetz, D.A., Schaffer, B. 1991. Flood-induced chemical transformations in calcareous agricultural soils of South Florida. Soil Sci. 152:33–40.
  20. Lindsay, W.L. & Norvel, W.A. 1978. Development of  a  DTPA  soil  test  for  zinc, iron, manganese  and  Soil Science Society of America Journal. 42: 421-428.
  21. Lu, S.G., Tang, C., Rengel, Z. 2004. Combined effects of waterlogging and salinity on electrochemistry, water-soluble cations and water dispersible clay in soils with various salinity levels. Plant Soil. 264:231–245.
  22. Mansfeldt, T. 2003. In situ long-term redox potential measurements in a dyked marsh soil. J. Plant Nutr. Soil Sci. 166: 210-219.
  23. Mclean, E.O. 1982. Soil pH and lime requirement. P. 199- 224. In: A.L. Page et al. (ed.), Methods of Soil Analysis. Part 2. SSSA. Madison, WI.
  24. Moldenhauer, K.A., Gibbons, J.H. 2002. Rice morphology and development. In: Smith CW, Dilday RH (eds) Rice: origin, history, technology, and production. Wiley, Hoboken, pp: 103–128.
  25. Nagarajah, S., Neue, H.U., Alberto, M.C.R. 1989. Effect of Sesbania, Azolla, and rice straw incorporation on the kinetic of NH4+,Fe2+, Mn2+, Zn2+, and P in some flooded rice soils. Plant Soi.l 116:37–48.
  26. Narteh, L.T., Sahrawat, K.L. 1999. Influence of flooding on electrochemical and hemical properties of West African soils. Geoderma. 87:179–207.
  27. Nelson, D.W. & Sommers, L.E. 1982.Total cabon, organic carbon, and organic matter.P. 539 – 579. In: A.L. Page et al. (eds.), Methods of Soil Analysis. Part II. 2th ed. ASA, SSSA, Madison, WI.
  28. Neue, H.E., & C.P. Mamaril. 1985. Zinc, sulfur and other micronutrient in wetland soils: Characterization, classification and utilization. Proceeding of a Workshop from 26 March to 5 April. Manil Philippines, IRRI.  
  29. Olsen, S.R. & Sommers, L.E. 1982. In: A.L. Page et al.,(Ed.),Methods of Soil Analysis. Part 2. Monograph no 9.  (pp. 403-430). Amrican Agronomy, Madison, WI.
  30. Parent, C., Capell, N. Berger, A. Crevecoeur, M. & Dat, J.F. An overview of plant responses to soil waterlogging. Plant Stress. 2: 20 – 27.
  31. Patrick, W.H. & Khalid, R.A.. 1974. Phosphate release and sorption by soils and sediments effect of aerobic and anaerobic conditions. Science 186: 53 – 55.
  32. Patrick, W.E., Gambrell, R.P. & Faulkner, S.P. Redox measurements of soils. p. 1255 – 1273. In: D. Sparks (ed.). Methods of Soil Analysis. Part 3. Chemical methods. Soil Sci. Am. Book Series, No. 5. Madison, WI.
  33. Pezeshki, S.R. 2001. Wetland plant responses to soil flooding. Environ. Exp.Bot. 46: 299 - 312.
  34. Ponnamperuma, F.N. 1984. Effects of flooding on soils In: Kozlowski, T.T. (ed.). Flooding and Plant Growth. Academic Press Inc. Orlando, FL. PP. 9 – 45.
  35. Ponnamperuma, F.N. 1972. The chemistry of submerged soils. IRRI Los Banos, Los Banos, p 96.
  36. Quantin, C., Grunberge, O., Suvannang, N., Bourdon, E. 2008. Land management effects on biogeochemical functioning of saltaffected paddy soils. Pedosphere 18:183–194
  37. Roden, E.E. 2004. Analysis of long-term bacterial versus chemical Fe(III) oxide reduction kinetics. Geochim Cosmochim Acta. 68:205–216.
  38. Rogers, C.W., Brye, K.R., Roberts, T.L., Norman, R.J., Fulford, A.M. 2010. Assessing Redox Potentials as Related to Greenhouse Gases in Flooded Paddy Soils B.R. Wells Rice Research Studies 2010. AAES Research Series Saul Ethan. Effect of flooding on chemistry of paddy soils: a review. IJISET 2:235–243.
  39. Rostaminia, M., Mahmoodi, S., Sefidi, H.T., Pazira, E., Kafaee, S.B. 2011. Study of reduction-oxidation potential and chemical characteristics of a paddy field during rice growing season. J. Appl. Sci. 11:1004–1011.
  40. Sachs, M., Vartapetian, B. 2007. Plant anaerobic stress. I: Metabolic adaptation to oxygen deficiency. Plant Stress. 1: 123 – 135.
  41. Saleh, J., Najafi, N., Oustan, S., Aliasgharzad, N., Ghassemi-Golezani, K. 2013. Changes in extractable Si, Fe, and Mn as affected by silicon, salinity, and waterlogging in a sandy loam soil. Commun. Soil Sci. Plant Anal. 44:1588–1598.
  42. Schneider, A.1997. Release and fixation of potassium by a loamy soil as affected by initial water content and potassium status of soil samoles.European Journal of Soil Science. 48: 263 – 271.
  43. Scott, H.D., Miller, D.M., Renaud, F.G. 2003 Rice soils: physical and chemical characteristics and behavior. In: Smith, C.W., Dilday, R.H.(eds) Rice: origin history, technology and production. Wiley, New York, pp 297–329.
  44. Sigg, L., C.A. Johnson & A. Kuhn. 1991. Redox condition and alkalinity generation in a seasonally anoxic lake. Mar. Chem. 36: 9-26.
  45. Singh, S.N. 2001. Exploring correlation between redox potential and other edaphic factors in field and laboratory conditions in relation to methane efflux. Environ. Int. 27: 265 – 274.
  46. Sposito, G. 1981. The thermodynamics of soil solutions. New York,Oxford University Press.
  47. Veneman, P.L.M., and Pickering, E.W. 1983. Salt Bridge for Redox Potential Measurements. Comm. Soil Sci. Plant Anal. 14: 669-677.
  48. Vonlangen, P.J., K.S. Johnson, K.H. Coale & V.A. Elrod. 1997. Oxidation Kinetices of manganese (II) in seawater at nanomolar concentration. Geochim. Cosmochim. Acta. 61: 4945-4954.
  49. Wright, R.J. & T.I. Stuczynski. 1996. Atomic absorption and flame emission spectroscopy. In: Methods of Soil Analysis. Sparks, D.L. (Ed.), Part III, Chemical Methods, SSSA Book Series No.5, SSSA, Madison, WI. P. 65 – 91.
  50. Zarate-Vaide, J.L., R.J. Zdsoski & A.E. Lauchli. 2006. Short-term effect of moisture on soil solution pH and Eh. Soil Sci. 171: 423 – 431.