تخمین مقاومت کششی خاک با استفاده از روش‌های مختلف مدل‌سازی در برخی از اراضی پسته‌کاری رفسنجان

نوع مقاله : مقاله پژوهشی

نویسندگان

1 استاد گروه علوم خاک، دانشکده کشاورزی، دانشگاه ولی عصر رفسنجان

2 دانش آموخته کارشناسی ارشد، دانشگاه ولی عصر رفسنجان

3 استادیار گروه کشاورزی، دانشگاه پیام نور استان کرمان، مرکز رفسنجان

4 دانشیار گروه علوم خاک، دانشکده کشاورزی، دانشگاه ولی عصر رفسنجان

5 دانشیار گروه علوم خاک، دانشکده کشاورزی، دانشگاه جیرفت

چکیده

مقاومت کششی یکی از شاخص‌‌های مهم کیفیت فیزیکی خاک است که معادل بیشینه تنشی است که می‌توان بر روی یک خاکدانه به کار برد تا حدی که خاکدانه در آستانه یا در شرف تخریب قرار گیرد. هدف از این پژوهش بررسی کارایی روش‌های مدل‌سازی مختلف در تخمین مقاومت کششی خاک در باغ­های پسته رفسنجان است. برای این منظور نمونه‌های خاک (80 نمونه خاک غالباً لوم‌شنی از عمق صفر تا 30 سانتی‌متری) تهیه و برخی از ویژگی‌های فیزیکی و شیمیایی خاک تعیین شدند. هم‌چنین مقاومت کششی خاکدانه‌های در اندازه‌های مختلف اندازه‌گیری شد. نتایج اندازه‌گیری­ها نشان داد که با توجه به قابلیت هدایت الکتریکی، واکنش خاک و نسبت جذب سطحی سدیم، خاک منطقه مطالعاتی شور و سدیمی می‌باشد. رگرسیون چندگانه بین مقاومت کششی با سایر ویژگی‌های خاک بررسی شد. هم‌چنین مدل‌سازی مقاومت کششی با استفاده از شبکه عصبی پرسپترون چند لایه و درخت تصمیم انجام شد. در این پژوهش از میانگین مربعات خطا و ضریب تبیین برای ارزیابی مدل‌های مختلف مدل‌سازی استفاده شد. نتایج ارزیابی مدل‌ها نشان داد که استفاده از درخت تصمیم برای پیش‌بینی مقاومت کششی به دلیل دارا بودن کمترین خطا (RRMSE =14% و با R2 = 0.88) نسبت به دو روش رگرسیون چندگانه و. شبکه عصبی پرسپترون چند لایه بهتر می‌باشد. هم‌چنین نتایج نشان داد که درصد رس، درصد رس قابل پراکنش، نسبت جذب سطحی سدیم، درصد کربنات کلسیم معادل و درصد ماده آلی تأثیرگذارترین متغیرها بر مقاومت کششی هستند. با توجه به نتایج حاصل، به نظر می‌رسد موثر‌ترین راهکار در بالابردن مقاومت کششی خاک و کاهش تراکم خاک در باغ‌های پسته افزایش درصد ماده آلی خاک خواهد بود.
 

کلیدواژه‌ها

موضوعات


عنوان مقاله [English]

Estimation of Soil Tensile Strength Using Different Modeling Methods in Some Pistachio Orchards of Rafsanjan, Iran

نویسندگان [English]

  • Hossain shirani 1
  • nahid Asgharineghad 2
  • Somayeh Sadr 3
  • Isa esfandiarpoor 4
  • Hossain shekofteh 5
1 Professor, Department of Soil Sciences, Faculty of Agriculture, Vali-e-Asr University, Rafsanjan
2 MSc Graduate, Vali-e-Asr University of Rafsanjan
3 Assistant Professor of Agriculture, Payame Noor University, Kerman Province, Rafsanjan Center
4 Associate Professor, Department of Soil Sciences, Faculty of Agriculture, Vali-e-Asr University, Rafsanjan
5 Associate Professor Department of Soil Sciences, Faculty of Agriculture, Jiroft University
چکیده [English]

Tensile strength is one of the most important indicators for soil physical quality, which is equivalent to the maximum stress applied to an aggregate without any disruption. The purpose of this study was to investigate the performance of different modeling methods for estimating soil tensile strength of some Rafsanjan pistachio orchards. For this purpose, soil samples (80 samples from 0- 30 cm depth mostly sandy loam) were taken and some soil physical and chemical properties were determined. Aggregate tensile strength was also measured in different sizes. The average EC, pH, and SAR indicated that soils of the study area were saline and sodic. Multiple regression between tensile strength and other soil properties were investigated. Tensile strength modeling was also performed using multilayer perceptron neural network and decision tree. The mean squares of error and coefficient of determination were used to evaluate different modeling models. The results of model evaluation showed that the use of regression decision tree for predicting tensile strength was better than the other modeling methods because of the lowest error (R2=0.88 and RRMSE = 14%) compared to the two methods of multiple regression and the multilayer perceptron neural network. Also, the results of different tensile strength modeling showed that the percentage of clay, percentage of dispersible clay, adsorption ratio of sodium, percentage of calcium carbonate equivalent, and the percentage of organic matter are the most influential variables on tensile strength. According to the results, it seems that the most effective way to increase soil tensile strength and reduce soil bulk density in pistachio orchards is to increase the percentage of soil organic matter.

کلیدواژه‌ها [English]

  • Decision tree
  • Multilayer perceptron neural network
  • Error estimators
  • Soil organic matter
  1. برزگر، ع.ا. 1393. مبانی فیزیک خاک. انتشارات دانشگاه شهید چمران اهواز
  2. بهبودیان، ج. 1394. آمار و احتمال مقدماتی. دانشگاه امام رضا (ع)
  3. تاجیک، ف.، رحیمی، ح.، پذیرا، ا. 1381. اثر مواد آلی خاک، هدایت الکتریکی و نسبت جذب سدیم بر مقاومت کششی خاکدانه‌ها. مجله علوم و فنون کشاورزی و منابع طبیعی. 6(3):. 151-160
  4. خزائی، ع. مصدقی، م- ر. محبوبی، ع. 1387. تأثیر شرایط آزمایش، مقدار ماده آلی، رس و کربنات کلسیم خاک بر میانگین وزنی قطر و مقاومت کششی خاکدانه‌ها در برخی از خاک‌های استان همدان. مجله علوم و فنون کشاورزی و منابع طبیعی. 44: 123 - 135.
  5. شیرانی، ح. 1397. شبکه­ های عصبی مصنوعی با رویکرد کاربرد در علوم کشاورزی و منابع طبیعی. انتشارات دانشگاه ولی عصر (عج) رفسنجان
  6. صفا دوست، آ. 1392. اثر مدیریت زراعی و بافت بر برخی ویژگی‌های ساختمانی خاک. مجله پژوهش‌های خاک (علوم خاک و آب). 27(3): 327 -334.
  7. صفا دوست، آ.‌ 1395. بررسی اثرات بافت، شرایط رطوبتی و سیستم کشت بر تردی خاک. آب و خاک. 30(1): 186-193.
  8. فراهانی، ا.، امامی، ح.، فتوت، ا.، خراسانی، ر.، اسماعیلی، ک. 1395. تاثیر نسبت‌های مختلف Na/K محلول خاک بر مقاومت کششی و تردی خاکدانه‌ها. نشریه دانش آب و خاک. 26(3): 161- 174.
  9. Anlauf, R., and P. Rehrmann. 2012. Effect of compaction on soil hydraulic parameters of vegetative landfill covers. Geomaterials. 2:29–36. doi:10.4236/gm.2012.22005
  10. Azadegan, B. 2009. Effects of compaction in the cultivated soils on permeability and water use efficiency in Pakdasht region Iran. J Irrig Drain. 3: 60-70.
  11. Barral, M., Buján, E., Devesa, R., Iglesias, M.L. and M. Velasco-Molina. 2007. Comparison of the structural stability of pasture and cultivated soils. Sci Total Environ. 378(1): 174-178
  12. Barzegar, A.R., Oades, J.M. Rengasamy, P. and L. Giles. 1994. Effect of sodicity and salinity on disaggregation and tensile strength of an Alfisol under different cropping system. Soil Tillage Res. 32: 329-345.
  13. Barzegar, A.R. Oades, J.M. Rengasamy, P. and R.S. Murray. 1995. Tensile strength of dry, remoulded soils as affected by properties of the clay function. Geoderma. 65: 93-108.
  14. Bouyoucos, G.J. 1951. A Recalibration of the hydrometer method for making mechanical analysis of soils. Agron J. 43: 434-438
  15. Burt, R.. Reinsch, T.G. and W.P. 1993. A micro‐pipette method for water dispersible clay. Commun Soil Sci Plant Anal, 24(19-20): 2531-2544.
  16. Cigizoglu, H.K. and K. Özgür. 2006 .Methods to improve the neural network performance in suspended sediment estimation, J Hydro. 317(3–4): 221-238
  17. Curtin, D. Steppuhn, H. and F. Selles. 1994. Effects of magnesium on cation selectivity and structural stability of sodic soils. Soil Sci Soc Am J. 58: 730-737.
  18. ‏Causarano, H. 1993. Factors affecting the tensile strength of soil aggregates. Soil Tillage Res. 28:15-25.
  19. Despotovic, M., Nedic, V., Despotovic, D., and S. Cvetanovic. 2016. Evaluation of empirical models for predicting monthly mean horizontal diffuse solar radiation. Renewable and Sustainable Energy Reviews, 56, 246-260.
  20. Dexter, A.R. and H. Kroesbergen. 1985. Methodology for determination of tensile strength of soil aggregates. J Agric Eng Res. 37: 139-147.
  21. Grant, C.D. Dexter, A.R. and J.M. oades. 1992. Residual effects of additions of calcium compounds on soil structure and strength. Soil Tillage Res. 22: 283-297.
  22. Geisser, S. 1993. Predictive Inference. Chapman and Hall, New York. ISBN- 0- 412 -03471 - 9.
  23. Hillel, D. 1980. Fundamentals of Soil physics. Academic Press, New York.
  24. Hill, T. and P. Lewicki. 2005. Statistic: Methods and Applications: a Comprehensive Reference For Science, Industry, and Data Mining. StatSoft, Inc.
  25. Hojjatnooghi, F., Shirani, H., Pazira, E., Besalatpour, A.A. and A. Mohammadi Torkashvand. 2021. Determination of Soil Properties Affecting Soil Aggregate Tensile Strength in a Semiarid Region of Iran Using a Hybrid Algorithm. Commun. Soil Sci. Plant Anal. DOI: 10.1080/00103624.2021.1908321.
  26. Hojjatnooghi, F., Shirani, H., Pazira, E., Besalatpour, A.A. and A. Mohammadi Torkashvand. 2019. Identification of Soil Properties Influencing Some Soil Physical Quality Indicators Using Hybrid PSO-ICA-SVR Algorithm in Some Agricultural Land Uses of Kerman Province, Iran. Commun Soil Sci Plant Anal. DOI: 10.1080/00103624.2019.1648658
  27. Imhoff, S., da Silva, A.P., A., Dexter. 2002. Factors contributing to the tensile strength and friability of Oxisols. Soil Sci Soc Am J. 66: 1656–1661.
  28. Kohavi, R. 1995. A study of cross- validation and bootstrap for accuracy estimation and model selection Proceedings of the fourteenth International Joint Conference on Artificial Intelligence. 14(2): 1137- 1145.
  29. Kim J.H. 2009. Estimating classification error rate: Repeated cross-validation, repeated hold- out and bootstrap. Comput Stat Data Anal. 53: 3735- 3745.
  30. Le Bissonnais, Y. 1996. Soil characteristics and aggregate stability. In: M Agassi, (ed). Soil Erosion, conservation, and Rehabilitation. Marcel Dekker, Inc. New York. 41-60.
  31. Macks S.P., Murphy B.W., Cresswell H.P., and T.B., Koen. 1996. Soil friability in relation to management history and suitability for direct drilling. Aust J Soil Res J. 34: 343-360.
  32. Miller W.P. and D.M., Miller. 1987. A Micro- pipette method for soil mechanical analysis. Soil Sci Plant Anal. 18: 1-15.
  33. Munkholm, L.J., Schjønning, P. and B. D. Kay. 2002. Tensile strength of soil cores in relation to aggregate strength, soil fragmentation and pore characteristics. Soil Tillage Res. 64 (1–2):125–35. Doi: 10.1016/S0167-1987(01)00250- 1.
  34. Munkholm, L.J., 2011. Soil friability: A review of the concept, assessment and effects of soil properties and management. Geoderma. 167-168: 236–246.
  35. Razi, M.A. and K. Athappilly. 2005. A comparative predictive analysis of neural networks (NNs), nonlinear regression and classification and regression tree (CART) models. Expert Syst Appl. 29(1): 65-74. Available at: https://doi.org/10.1016/j.eswa.2005.01.006.
  36. Rhoades, J.D. 1996. Salinity: Electrical conductivity and total dissolved In: A. L. page, R. H. Miller and D. R. Keeney (ed.), Methods of Soil Analysis: Part 3, Chemical and Microbiological Properties. Soil Science Society of America, American Society of Agronomy, Madison, Wisconsin, USA, 417-435.
  37. Schaap, M.G., Leij, F.J., and M. Van Genuchten. 1998. Neural properties. Soil Sci Soc Am J. 62: 847–855.
  38. Shirani, H., Habibi, M., Besalatpour, A.A. and I. Esfandiarpour. 2015. Determining the features influencing physical quality of calcareous soils in a semiarid region of Iran using a hybrid PSO-DT algorithm. Geoderma 11 (259–- 260):1–11. doi:10.1016/j.geoderma.2015.05.002.
  39. Tabari, H., Martinez, C., Ezani, A., and P.H. Talaee. 2013. Applicability of support vector machines and adaptive neurofuzzy inference system for modeling potato crop Irrig Sci, 31(4): 575-588.‏
  40. Ternan, J.L., Williams, A.G., Elmes, A. and R. Hartley. 1996. Aggregate stability of soils in central Spain and the role of land management. Earth Surf Process Landf. 21: 181-193.
  41. Thomas, G.W. 1996. Soil pH and soil acidity. In: A. L. page, R. H. Miller and D. R. Keeney (ed.), Methods of Soil Analysis: Part 3, Chemical and Microbiological Properties. Soil Science Society of America, American Society of Agronomy, Madison, Wisconsin, USA, 475-490.
  42. Uhrig, R.E. 1995. Introduction to artificial neural networks. In: Proceedings of the IEEE 21st international conference on industrial electronics, control, and instrumentation (IECON-1995). 1: 33–37
  43. Walkley, A. and I. A., Black. 1934. An examination of the Degtjareff method for determining soil organic matter, and a proposed modification of the chromic acid titration method. Soil Sci. 37: 29-38.
  44. Richards LA 1954. Diagnosis and improvement of saline and alkali soils. USDA Hand Book, No. 60.
  45. Kassim, J.K. 2013. Method for estimation of calcium carbonate in soils from Iraq. Int. J Environ Sci. 1(1): 9-19.‏
  46. Watts, C.W., and A.R. Dexter. 1998. Soil friability: Theory, measurement and the effects of management and organic carbon content. Eur J Soil Sci. 49 (1):73–84. doi:10.1046/j.1365-2389.1998.00129.x
  47. Wilding, L.P. 1985. Spatial variability: Its documentation, accommodation and implication to soil surveys. pp. 166-187. In: D.R. Nielsen and J. Bouma (ed.). Soil Spatial Variability.Workshop of the ISSS and the SSA, Las Vegas PUDOC, Wageningen. 30 November-1 December.
  48. Wu X., Wei Y., Wang J., Wang D., She L. Wang J., and C.H., Cai. 2017. Effects of soil physicochemical properties on aggregate stability along a weathering gradient. Catena. 156: 205–215.
  49. Yasrebi, J.A., Saffari, M.A., Fathi, H.A., Karimiyan, N.A., Emadi, M.O., and M.A. Baghernejad. 2008. Spatial variability of soil fertility properties for precision agriculture in Southern J Appl Sci. 8: 1642-1650.
  50. Yohaness, 1999. Classification and Regression Tree: an Introduction. Research Institute of Washington, D.C.