کاربرد پارامترهای فراکتالی توزیع اندازه ذرات و خاکدانه‌های ریز در برآورد هدایت هیدرولیکی اشباع خاک‌های استان گیلان

نوع مقاله : مقاله پژوهشی

نویسندگان

1 استاد دانشگاه

2 دانشجوی سابق کارشناسی ارشد دانشگاه بوعلی سینا، همدان

3 استادیار پژوهش، موسسه تحقیقات خاک و آب، سازمان تحقیقات، آموزش و ترویج کشاورزی، کرج، ایران

4 استاد دانشگاه بوعلی سینا، همدان

چکیده

هدایت هیدرولیکی اشباع خاک(Ks)  یکی از مهمترین پارامترهای فیزیکی خاک بوده که اندازه‌گیری مستقیم آن به علت تغییرات مکانی و زمانی بسیار دشوار، هزینه­بر و زمان­بر است. از این رو از توابع انتقالی برای برآورد Ks بهره‌گیری می­شود. یافتن متغیرهایی که موجب بهبود برآوردKs  شوند دارای اهمیت زیادی است. هدف از این پژوهش بررسی بهبود برآورد Ks با وارد کردن پارامترهای فراکتالی توزیع اندازه ذرات و خاکدانه­های ریز در توابع انتقالی در گام‌های مختلف بود. در هر گام یک تابع انتقالی با ورودی‌های متفاوت و مجموعاً 6 تابع ایجاد شد. برای انجام این پژوهش تعداد 260 نمونه خاک از اراضی استان گیلان جمع­آوری شد. توزیع اندازه ذرات (2-0 میلی­متر) و خاکدانه­های ریز (2-0 میلی­متر) اندازه‌گیری شده و مدل­ فراکتالی بیرد و پریر (2003) بر این توزیع‌ها برازش شد و پارامترهای مدل به‌دست آمد. تجزیه و تحلیل داده­ها نشان داد که از دیدگاه آماری بین Ks و پارامترهای فراکتالی توزیع اندازه ذرات همبستگی معنی­دار (01/0>P) وجود داشت. با وارد کردن پارامترهای فراکتالی ذرات و خاکدانه‌های ریز در توابع انتقالی به ترتیب در گام­های دوم و سوم برای برآورد Ks، ریشه میانگین مربعات خطا  (RMSE)به‌طور معنی­دار کاهش یافت. همچنین در گام چهارم افزایش میانگین هندسی قطر خاکدانه­ها اثر معنی­دار بر برآورد Ks نشان داد. ولی در گام پنجم افزایش میانگین و انحراف استاندارد هندسی قطر ذرات اثر معنی­دار بر برآورد Ks  نداشت. در گام ششم با افزایش همزمان پارامترهای فراکتالی توزیع اندازه ذرات و خاکدانه‌های ریز نسبت به گام­های پیشین RMSE کاهش بسیاری نشان داد و بیشترین اثر را در برآورد Ks داشتند. روی هم رفته پارامترهای فراکتالی می‌توانند به‌عنوان متغیر‌های ورودی مناسب در توابع انتقالی بهره­گیری شده و باعث بهبود برآورد Ks شوند.

کلیدواژه‌ها


عنوان مقاله [English]

Use of Fractal Parameters of Particles and Micro-Aggregate Size Distributions for Estimation of Saturated Hydraulic Conductivity in Soils of Guilan Province

نویسندگان [English]

  • h. bayat 1
  • Azadeh sedaghat 2
  • Naser Davatgar 3
  • Ali Akbar Safari Sinegani 4
2 M. Sc. student of Bu Ali Sina University
3 Assistant Professor, Rice Research Institute of Iran
4 Professor, Bu Ali Sina University
چکیده [English]

Soil saturated hydraulic conductivity (Ks) is one of the most important soil physical properties. Its direct measurements is difficult, expensive, and time consuming because of spatial and temporal variability. Therefore, pedotransfer functions have been used to estimate Ks. The purpose of this study was to improve the estimation of Ks using fractal parameters of particle and micro-aggregate size distributions and to compare their efficiency with the structural parameters at six stages in the estimation of Ks. As a matter of fact, one pedotransfer function was developed in each stage with different input variables. In this study, 260 soil samples were taken from different parts of Guilan province, Iran. Particle and micro-aggregate size distributions (0-2 mm) were measured and fractal model of Bird and Perrier (2003) was fitted to them and their parameters were calculated. Significant correlations (P < 0.01) were found between Ks and fractal parameters of particles and micro-aggregates. Estimation of Ks was improved and root mean square error (RMSE) decreased significantly by using fractal parameters of soil particles and micro-aggregates as predictors. Using geometric mean diameters of soil aggregates at the stage four improved Ks estimations significantly, but, using geometric mean and standard deviation of soil particles at the stage five did not improve Ks estimations significantly. Using fractal parameters of particles and micro-aggregates, simultaneously, at the stage six, decreased RMSE considerably and had the highest effect on the estimation of Ks. Generally, fractal parameters may be successfully used as input parameters to improve the estimates of Ks by the pedotransfer functions.

کلیدواژه‌ها [English]

  • Fractal theory
  • Geometric mean diameters of particles
  • Pedotransfer functions
  1. احمدی، ع. نیشابوری، م.ر. اسدی، ح. 1389. ارتباط بعد فرکتالی توزیع اندازه ذرات با برخی خصوصیات فیزیکی خاک. مجله دانش آب و خاک. 20(1): 73-80
  2. بیات ح، 1387 . ایجاد توابع انتقالی برای پیشبینی منحنی رطوبتی از طریق شبکه­های عصبی مصنوعی (ANNs)و مدیریت گروهی داده­ها (GMDH) با استفاده از پارامترهای فرکتالی و تجزیه به مولفه­های اصلی. پایان نامه دکتری گروه خاکشناسی، دانشکده کشاورزی، دانشگاه تبریز.
  3. رضایی، ع.، نیشابوری، م. ر. و سپاسخواه، ع. 1384. ارزیابی مدل­های شبیه­سازی منحنی مشخصه آب خاک بر اساس توزیع دانه بندی ذرات خاک. مجله دانش کشاورزی. 15 (2): 119-130.
  4. زرین فر، س. قهرمان، ق. داوری، ک. 1390. ارائه توابع انتقالی جهت پیش بینی هدایت هیدرولیکی اشباع خاک­های گراولی با استفاده از رگرسیون حداقل مربعات جزئی. 25(3): 617-624
  5. دوات‌گر، ن.، کاووسی، م.، علی‌نیا، م. ح.، پیکان، م. 1384. بررسی وضعیت پتاسیم و اثر خواص فیزیکی و شیمیائی خاک بر آن در شالیزارهای استان گیلان. علوم و فنون کشاورزی و منابع طبیعی 4: 71-88.
  6. شفیعی، آ. 1375. مطالعه­ی فراکتال­ها و کاربرد آنها. پایان نامه کارشناسی ارشد. دانشکده مهندسی مکانیک. دانشگاه صنعتی اصفهان
  7. عباسی, ف. 1386. "فیزیک خاک پیشرفته". انتشارات دانشگاه تهران. 250 صفحه.
  8. Addiscott, T.M. 1993. Simulation modelling and soil behavior. Geoderma, 60, 15-40.
  9. Akaik, H. 1974. A New Look at the statistical model identification. IEEE Transaction on automatic control AC-19: 716-723
  10. Arya, L.M., and J.F. Paris. 1981. A physicoempirical model to predict the soil moisture characteristic from particle size distribution and bulk density data. Soil Science Society of America Journal . 45:1023-1030.
  11. Arya, L.M., Leij, F.J., Van Genuchten, M.Th., and P.J. Shouse. 1999b. Relation between hydraulic conductivity function and the particle- size distribution. Soil Science Society of America Journal63: 1063-1070.
  12. Bartoli,F., Bird,N.R.A., Gomendy,V., Vivier,H and Niquet,S.1999. The relation between silty soil structures and their mercury porosimetry counterparts: fractals and percolation.European Journal of Soil Science.50, 9-22
  13. Bayat, H., Neyshabouri, M.R., Mohammadi, K., and N.Nariman-Zadeh. 2011. Estimating Water Retention with Pedotransfer Functions Using Multi-Objective Group Method of Data Handling and ANNs. Pedosphere. 21 : 107-114.
  14. Bird, N.R.A., and R. Dexter. 1997. Simulation of water retention using random  fractal networks. European Journal of Soil Science.48: 633-641
  15. Bird, N.R.A., and E.M.A. Perrier. 2003. The PSF model and soil density scaling. European Journal of Soil Science. 54: 467-476.
  16. Brady, N.C., and R.R .Weil. 2002. The nature and properties of soils. 12 th edition. Prentice Hall.
  17. Campbell, G.S. 1985. Soil Physics with Basic. Transport Models for Soil-Plant Systems. Developments in soil Science, Vol. 14. Elsevier, Amsterdam.150pp.
  18. Clap, R.B., and G.M.Hornberger. 1978. Empirical equations for some soil-hydraulic properties. Water Resources Resaarch.117: 311-314
  19. Cosby, B.J., Hornberger, G.M., Clapp, R.B.  and Ginn, T.R. 1984. A statistical exploration of the relationships of soil moisture characteristics to the physical properties of soils. Water Resour. Res. 20: 682–690.
  20. Dexter, A.R., Czyz, E.A., and O.P.Gate. 2004. Soil structure and the saturated hydraulic conductivity of subsoils. Soil Till. Res. 79: 185–189.
  21. Florian, S.C., and H.Rainer. 2005. Modeling the soil water retention curve for conditions of variable porosity. Published in VadoseZon Journal. 4:602-613.
  22. Gee, G.W., and D.Or. 2002. Particle- Size Analysis. PP. 225-295. In: Dane.H.J and Topp.G.C. (eds) Methods of Soil Analysis. Part 4. Physical Methods. Soil Science Society of America Inc,
  23. Grossman, R.B., and T.G.Reinsch. 2002. Bulk density and linear extensibility. PP. 201-228.In: Dane.H.J and Topp.G.C. (eds) Methods of Soil Analysis. Part 4. Physical Methods. Soil Science Society of America Inc,
  24. Jarvis, N.J., Zavattaro, L., Rajkai, K., Reynolds, W.D., Olsen, P. A., McGechan, M., Mecke, M., Mohanty, B., Leeds-Harrison, P.B., and D.Jacques. 2002. Indirect estimation of near-saturated hydraulic conductivity from readily available soil information. Geoderma. 108: 1-17.
  25. Jaynes, D.B., and E.J.Tyler. 1984. Using soil physical properties to estimate hydraulic conductivity. Soil Science. 138:298–305.
  26. John, R., and S.Kim. 2002. Methods of Soil Analysis Part 4 Physical Methods. Perkins U.S. Geological Survey,Menlo Park, California. 317-328.
  27. Hwang, S.I., and S.E.Powers. 2003. Using particle-size distribution models to estimate soil hydraulic properties. Soil Science Society of America. 67:1103–1112.
  28. Kao, C.S. and Hunt, J.R. 1996. Prediction of wetting front movement during one-dimentional infiltration into soils. Water Resour Res. 9(2): 384–395.
  29. Klute, A., and C.Dirksen. 1986. Hydraulic conductivity and diffusitivity: laboratory methods. PP. 687-734. In: A.Klute (Ed.), Methods of Soil Analysis. Part 1. 2nd edition.. ASA and SSSA, Madison, WI
  30. Kumar, S., Gupta, S.K., and S.Ram. 1994. Inverse technique for estimating transmissivity and drainable pore space utilizing data from subsurface drainage experiment. Agricultral Water Management. 26: 41-58.
  31. Legout,C., Leguedois,a.b.s., Lebissonnais, b.y.2005. Aggregate breakdown dynamics under rainfall compared with aggregate stability measurements. European Journal of Soil Science. 56, 225–237
  32. Leij, F., Schaap, M.G. and Arya, L.M. 2002. Water retention and storage: Indirect methods. PP. 1009–1045. In: H. .Dane and G.C. Topp (Ed.), Methods of Soil Analysis. Part 4. SSSA Book Ser. No. 5. Soil Science Society of America Journal, Madison
  33. Marshall, T.J. 1958. A relationship between permeability and size distribution of pores, J. Soil Science, 9: 1-8
  34. Minasny, B., Hopman, J., Harter, W.T., Eching, S.O.,  Toli, A.  and Denton, M.A. 2004. Neural networks prediction of soil hydraulic functions for alluvial soils using multistep outflow data. Soil Science Society of America Journal. 68: 417– 429
  35. Millan, H., Gonzalez-Posada, M.,  Aguilar, M.,  Dominguez, J., and  Cespedes. 2003. On the fractal scaling of soil data . Particle-size distributions. Geoderma. 117: 117-128.
  36. Millán, H., González-Posada, M., Morilla, A.A. and Pérez, E. 2007. Self-similar organization of Vertisol microstructure: A pore–solid fractal interpretation. Geoderma 138: 185–190.
  37. Mishra, S., Parker, J.C., and N.S.Singhal. 1989. Estimating of soil hydraulic properties and their uncertainty from particle size distribution data. J. Hydrol .108: 1-18.
  38. Mualem, Y. 1976a. A new model for predicting the hydraulic conductivity of unsaturated porous media. Water Resour. Res. 12:513-522.
  39. Mualem, Y. 1976b. A catalogue of the hydraulic properties of unsaturated soils. Research project no. 442 Technion, Israel Institute of Technology, Haifa, Israel.
  40. Parasuraman, K., A.Elshorbagy. 2006. Estimating saturated hydraulic conductivity in spatially variable fields using neural network ensembles. Soil Science Society of America Journal. 70: 1851–1859.
  41. Perrier, E., Rieu, M., Sposito, G., and G. Marsily. 1996. A computer model of the water retention curve for soils with a fractal pore size distribution. Water Resour. Res. 32: 3025-3031.
  42. Perrier, E., N.Bird. 2002. Modelling soil fragmentation : the PSF approach. Soil Tillage Res. 64: 91-99.
  43. Pirmoradian, N., Sepaskhah, A.R., and A.Hajabbasi. 2005. Application of fractal theory to quantify soil aggregate stability as influenced by tillage treatments. Biosystems Engin. 90(2): 227-234.
  44. Rawls, W.J., and D.L.Brakensiek. 1982. Estimating soil water retention from soil properties. J. Irrig. Drain. Div., Proc. ASCE. 198 (IR2): 166– 171.
  45. Rawls, W.J., Gish, T.J and Brakensiek.D.L.1991.Estimating soil water retention from soil physical properties and characteristics.Adv. Soil Science.9, 213-234
  46. Rawls, W.J., and D.L.Brakensiek. 1995. Utilizing fractal principles for predicting soil hydraulic-properties. Journal of Soil and Water Conservation. 50: 463-465
  47. Riue, M., and G.Sposito. Fractal fragmentation, soil porosity, and soil water properties. I. Theory. Soil Science Society of America Journal, 55, 1231–1238.
  48. Rieu, M., and G.Sposito. 1991b. Fractal fragmentation, soil porosity, and soil water properties. II. Applications. Soil Science Society of America Journal, 55, 1239–1244.
  49. Salako, F.K. 2006. Fractal scaling of soil particles in agricultural landscapes of Nigerian savannas. Agrophysics. 20: 337-344
  50. Shani, U., R.J. Hanks, E. Bresler, and C.A.S. Oliveira. 1987. Field method for estimating hydraulic conductivity and matric potential water content relations. Soil Sci. Soc. Am. J. 51:298-302.
  51. Shirazi, M. A., and L.Boresma. 1984. A unifying quantitative of soil texture. Soil Science Society of America Journal. 48 : 142- 147.
  52. Tietje, O., and V.Henninges.1996. Accuracy of the saturated hydraulic conductivity prediction by pedo-transfer functions compared to the variability within FAO textural classes. Geoderma, 69:71-84.
  53. Tyler, S.W., and S.W.Wheatcraft. 1990. Fractal process in soil water retention. Water Resour. Res. 26: 1047-1054.
  54. Ungaro, F., Calzolari, C., and E.Busano.  Development of pedotransfer functions using a group method of data handling for the soil of the Pianura Padano- Veneta region of north Italy: Water retention properties. Geoderma. 124:293-317.
  55. Vereecken, H., Maes, J. and Feyen, J. 1990. Estimating unsaturated hydraulic conductivity from easily measured soil properties. Soil Sci. 149:1–12.
  56. Wagner, B., Tarnawski, V.R., Hennings, V., Muller, U., Wessolek, G., and R.Plagge. 2001. Evaluation pedptransfer function for unsaturayed soil hydraulic conductivity using an independent data set. Geoderma. 102:275-297.
  57. West, L.T., Abreu, M.A ., and J.P.Bishop. 2008. Saturated hydraulic conductivity of soil in the Southern piedmont of Georgia, USA: Field evaluation and relation to horizon and landscape properties. Catena. 73: 174-179.
  58. Wosten, J.H.M., Pachepsky, Ya.A., and W.J.Rawls. 2001. Pedotransfer functions: bridging the gap between available basic soil data and missing soil hydraulic characteristics, Journal of Hydrology (Amsterdam). 251: 123-150.
  59. Vereecken, H., Maes, J., Feyen, J. and Darius, P. 1989. Estimating the soil moisture retention characteristics from texture, bulk density and carbon content. Soil Science. 148: 389–403
  60. Young, I.M., and J.W.Crawford. 1991. The fractal structure of soil aggregates: its measurement and interpretation. Soil Science Society of America Journal. 42: 187-192.
  61. Young, I.M., Crawford, J.W., and C.Rappoldt. 2001. New method and models for characterizing structural heterogeneity of soil . Soil and Tillage Res. 61: 33-45.

62. Zhang, B. and Horn, R. 2001. Mechanisms of aggregate stabilization in Ultisols from subtropical China. Geoderma 99: 123