کاربرد منطق فازی در برآورد مقادیر غیردقیق شاخص فرسایندگی باران و تغییرات مکانی آن در حوزه آبخیز دریای خزر

نوع مقاله : مقاله پژوهشی

نویسندگان

1 استاد سازمان تحقیقات، آموزش و ترویج کشاورزی

2 استادیار دانشگاه آزاد اسلامی واحد تاکستان

3 استاد پژوهشکده حفاظت خاک و آبخیزداری

4 استاد دانشگاه آزاد اسلامی واحد علوم و تحقیقات تهران

5 مربی پژوهشکده حفاظت خاک و آبخیزداری

چکیده

فرسایندگی باران در مدل جهانی فرسایش و هدررفت خاک (EI30) که حاصلضرب انرژی جنبشی (E) و حداکثر انرژی جنبشی باران (I30) می‌باشد، یکی از پارامترهای مهم مدل­های ریاضی فرسایش خاک و تولید رسوب محسوب می­شود. از آن‌جایی که اندازه­گیری آن وقت­گیر و هزینه­بر است، برای برآورد آن از روابط تجربی استفاده می­شود که مبتنی بر شدت باران می‌باشند. داده‌های شدت بارندگی در بسیاری مناطق موجود نیست. بنابراین، در عمل، شاخص فرسایندگی باران با استفاده از مقدار باران محاسبه و تخمین زده می­شود که منجر­به عدم قطعیت در داده‌های شاخص فرسایندگی باران می‌شود. در این پژوهش، منطق فازی بر داده‌های غیردقیق شاخص فرسایندگی باران اعمال شد و سپس، تغییرات مکانی آن با شش روش‌ کریجینگ معمولی، کوکریجینگ، اسپلاین، چندجمله­ای منطقه­ای، چندجمله­ای محلی و عکس فاصله وزن‌دار بررسی شد تا تاثیر منطق فازی بر این روش‌ها ارزیابی شود. در بین پارامترها و شاخص‌های مختلف فرسایندگی مبتنی بر میزان باران، تنها شاخص فورنیه اصلاح شده (FImod) همبستگی بالایی را با EI30 در 11 ایستگاه سینوپتیک نشان داد. یک مدل رگرسیونی برای تخمین EI30 از FImod در 66 ایستگاه فاقد آمار شدت بارندگی استفاده شد و سپس منطق فازی بر این داده‌های تخمینی‌ اعمال شد. تعداد پنج تابع عضویت گوسی برای ارتفاع به‌‌عنوان متغیّر ورودی و EI30  به عنوان متغیّر خروجی تعریف شد. سپس، مجموعه‌های شاخص فرسایندگی با روش مرکز ثقل دفازی شد و به اعداد قطعی تبدیل شد. نتایج نشان داد نسبت اثر قطعه‌ای به آستانه نیم‌تغییرنما (23/0) بیان‌گر همبستگی مکانی قوی EI30 در فاصله 630 کیلومتری است. مقادیر منفی میانگین انحراف خطا (MBE) در روش‌های فازی کوکریجینگ و فازی کریجینگ بیان‌گر کم‌برآورد شدن EI30 بود، در حالی‌که مقادیر مثبت آن در سایر روش‌ها نشان‌دهنده بیش‌برآورد شدن این شاخص می‌باشد. از سوی دیگر، مقدار  میانگین مطلق خطا (MAE) در روش فازی کوکریجینگ نسبت به روش‌های عکس فاصله وزن‌دار، کریجینگ، کوکریجینگ، اسپلاین، فازی عکس فاصله وزن‌دار، فازی کریجینگ و فازی اسپلاین به ‌ترتیب به‌ میزان 28، 21، 19، 22، 15، 11 و 11 درصد کاهش نشان داد. نقشه خروجی برای تمام روش‌های میان‌یابی حاکی از وجود روند کاهشی از غرب به شرق حوزه بود، به ‌طوری‌که بیش‌ترین مقدار فرسایندگی (1450 مگا­ژول میلی‌متر در هکتار در ساعت در سال) در غرب حوزه اتفاق افتاد. این الگو مطابق با الگوی تغییرات اقلیمی از مرطوب به نیمه‌خشک بود.

کلیدواژه‌ها


عنوان مقاله [English]

Application of Fuzzy Logic to Some Imprecise Data of Rainfall Erosivity and Its Spatial Variability in Caspian Sea Watershed

نویسندگان [English]

  • Mohammad Hossein Mahdian 1
  • N. Khorsandi 2
  • D. Nikkami 3
  • Ebrahim Pazira 4
  • A. Sarreshtedari 5
1 Professor, Agricultural Research, Education and Extension Organization
2 Assistant professor, Islamic Azad University, Takestan branch
3 Professor, Soil Conservation and Watershed Management Institute
4 Professor, Islamic Azad University, Science and Research Unit, Tehran branch
5 Scientific board, Soil Conservation and Watershed Management Institute
چکیده [English]

Rainfall erosivity (EI30) of the Universal Soil Loss Equation is one of the major factors in soil erosion and sediment yield models. Measurement of this factor is costly and time consuming. Therefore, empirical relationships based on rainfall intensity are used. In many places, however, access to rainfall intensity is limited and rainfall erosivity is estimated by rainfall amount, causing uncertainty in the results. In this research, fuzzy logic was applied to some imprecise data of rainfall erosivity and its spatial variability was evaluated by ordinary kriging, cokriging, spline, local polynomial, global polynomial and inverse distance weighting methods. Among the available parameters or indices of 11 synoptic stations, only Modified Fournier index () showed a significant correlation with EI30 (r2=0.762, P<0.001). Therefore, a regression model was developed for estimating EI30 from FImod in 66 rain gauge stations. Also, the Mamdani inference system and five Gaussian membership functions, were used to investigate the fuzzy interpolation method for elevation as the input and rainfall erosivity as the output variables. The fuzzified sets were transformed to certain data. The nugget to sill ratio (0.23) showed strong spatial correlation in a distant of 630 km of EI30. The negative values of the mean bias error in the fuzzy kriging and fuzzy cokriging methods indicated an underestimation of EI30 values, while its positive values in the other methods demonstrated an overestimation of EI30. The Mean Absolute Error (MAE) of the Fuzzy Cokriging method declined by 28%, 21%, 19%, 22%, 15%, and 11 percent, when compared to that of, respectively, the IDW, kriging, cokriging, spline and fuzzy IDW, fuzzy kriging, and fuzzy spline methods in the study area. The output maps for all of the interpolation methods followed similar decreasing trends in west to east direction of the watershed. The highest value of rainfall erosivity index (1450 MJ mm ha-1 h-1 y-1) was found in the west of the study area. This pattern is similar to the pattern of climatic change from humid to semiarid.  

کلیدواژه‌ها [English]

  • Fuzzy cokriging
  • Interpolation
  • Modified Fournier Index
  1. خرسندی، ن. 1389. بررسی تغییرات مکانی شاخص فرسایندگی باران در حوزه آبخیز دریای خزر. پایان‌نامه دکتری، دانشکده کشاورزی، دانشگاه آزاد، واحد علوم و تحقیقات.
  2. رحیمی‌بندرآبادی، س. و ب. ثقفیان. 1386. برآورد توزیع مکانی بارندگی با کمک تئوری مجموعه‌های فازی، تحقیقات منابع آب ایران، سال سوم، جلد 2، صفحه 26 الی 38.
  3. رفاهی، ح. ق. 1379. فرسایش آبی و کنترل آن، انتشارات دانشگاه تهران، 672 صفحه.
  4. علی‌پور، ز. ت. 1384، کاربرد فازی کریجینگ برای تهیه نقشه فرسایندگی باران در حوزه دریاچه نمک. پایان‌نامه دکتری، دانشکده کشاورزی، دانشگاه آزاد، واحد علوم و تحقیقات.
  5. Arnoldus, H.M.J. 1980. An approximation to the rainfall factor in the universal soil loss equation. In: Assessment of Erosion (Eds. De Boodt M. and M. Gabriels, Wiley, New York, pp. 127-132.
  6. Brown, L.C. and G.R. Foster. 1987. Storm erosivity using idealized intensity distributions. T. Am. Soc. Agri. Eng., 30:379-386.
  7. Hoyos, N., P.R. Waylen and A. Jaramillo. Seasonal and spatial patterns of erosivity in a tropical watershed of the Colombian Andes. J. Hydrol., 314:177-191.
  8. Kavian, A., Y. Fathollah Nejad, M. Habibnejad and K. 2011. Modeling seasonal rainfall erosivity on a regional scale: A case study from northeastern Iran. Int. J. Environ. Res., 5(4): 939-950.
  9. Mamdani, E.H. and Assilian. 1999. An experiment in linguistic synthesis with a fuzzy logic controller. Int. J. Hum-Comput. Stud., 51(2):135-147.
  10. Men, M., Z. Yu and H. 2008. Study on the spatial pattern of rainfall erosivity based on geostatistics in Hebei province, China. Front. Agric. China, 2(3): 281-289.
  11. Piotrowski, J.A., F. Bartels, A. Salski and G. Schmidt. Geostatistical regionalization of glacial aquitard thickness in northwestern Germany based on fuzzy kriging. Math. Geol., 28: 437-452.
  12. Theodossiou, N. and P. Latinopoulos. Evaluation and optimization of groundwater observation networks using the kriging methodology. Environ. Model Softw., 21:991-1000.