تأثیر تنش خشکی، کاربرد روی و تلقیح میکوریز بر جذب عناصر کم مصرف در ذرت

نوع مقاله : مقاله پژوهشی

نویسندگان

1 دانشگاه آزاد اسلامی واحد اراک، استادیار گروه زراعت و اصلاح نباتات، اراک، ایران

2 عضو هیأت علمی موسسه تحقیقات خاک و آب

چکیده

به منظور بررسی اثر سطوح مختلف روی بر غلظت عناصر غذایی کم مصرف تحت تنش خشکی در ذرت میکوریزایی(سینگل کراس 704)، آزمایشی در سال های 1385 و 1386 در مزرعه تحقیقاتی دانشکده­ی کشاورزی و منابع طبیعی دانشگاه آزاد اسلامی واحد اراک اجرا شد. آزمایش به صورت فاکتوریل در قالب طرح بلوک های کامل تصادفی با سه تکرار انجام شد. عوامل مورد مطالعه شامل سه سطح آبیاری، آبیاری معادل نیاز آبی گیاه (شاهد)، آبیاری معادل75% نیاز آبی گیاه و آبیاری معادل50% نیاز آبی گیاه)، قارچ میکوریزا در دو سطح (با تلقیح و بدون تلقیح) و روی از منبع سولفات روی در سه سطح (بدون مصرف، 25 کیلوگرم در هکتار و 45 کیلوگرم در هکتار) در نظر گرفته شد. نتایج حاصل از تجزیه واریانس مرکب نشان داد که غلظت عناصر غذایی تحت تأثیر تنش خشکی قرار گرفت. با اعمال تنش خشکی غلظت مس، منگنز، روی و آهن افزایش اما غلظت فسفر و بر کاهش یافت. تلقیح قارچ میکوریزا غلظت کلیه عناصر غذایی را افزایش داد. با مصرف عنصر روی میزان غلظت مس، روی و درصد پروتئین افزایش اما غلظت آهن، منگنز و بر کاهش یافت. یک اثر آنتاگونیستی بین مصرف روی و غلظت آهن مشاهده شد. تیمار های تنش خشکی، قارچ میکوریزا و روی به تنهایی باعث افزایش درصد پروتئین دانه شدند. اثر متقابل آبیاری و میکوریزا بر غلظت مس و بر در سطح 1% معنی دار شد اما بر غلظت سایر عناصر اثر معنی داری نداشت با این وجود میزان غلظت کلیه عناصر غذایی کم مصرف و درصد پروتئین با تلقیح قارچ میکوریزا تحت تنش خشکی افزایش یافت. با کاربرد روی تحت شرایط تنش خشکی، غلظت مس، روی، آهن، منگنز و درصد پروتئین افزایش ولی مقدار بر کاهش یافت. مصرف توأم روی و  قارچ میکوریزا باعث افزایش غلظت کلیه عناصر غذایی گردید. بالاترین میزان غلظت روی و درصد پروتئین از اثر متقابل تیمار های میکوریزا و 25 کیلوگرم سولفات روی در هکتار  به ترتیب در شرایط متوسط و شدید تنش خشکی حاصل شد.

کلیدواژه‌ها


عنوان مقاله [English]

Effects of Drought Stress, Zinc Application and Mycorrhiza Inoculation on Uptake of Micro Nutrients in Maize

نویسندگان [English]

  • N. A. Sajedi 1
  • FARHAD REJALI 2
1 Department of Agronomy and Plant Breeding, Assist Prof. Islamic Azad University
2 Scientific Member of Soil and Water Research Institute
چکیده [English]

In order to study the effects of drought stress, zinc application and mycorrhiza inoculation on uptake of micro nutrients in maize (KSC 704), an experiment was carried out in research farm of Islamic Azad University of Arak, Iran, during 2006-2007. Experimental design was factorial based on RCBD with three replications. Treatments composed of irrigation levels at three levels (%100, %75 and %50 of crop water demand), mycorrhiza fungi at two levels (with and without inoculation), and Zinc sulfate at three levels (0, 25 and 45 kg ha-1) .The results of combined variance analysis showed that drought stress significantly increased the concentration of copper, manganese, iron, and zinc, but reduced the concentration of boron. Inoculation with mycorrhiza fungi increased concentration of all nutritional elements. Using zinc sulfate increased the concentration of copper and zinc, but reduced the concentration of manganese, iron and boron. A negative antagonistic interaction was found between zinc and iron. Effect of water stress, mycorrhiza fungi, and zinc sulfate alone was significant on the   percent of protein in grain at %1 probability level. Effect of interactions between irrigation and mycirrhiza fungi was significant on the concentration of copper and boron  at %1 probability level, but it was not significant on  the concentration of  other  elements. However, the concentration of all nutritional elements and grain percent of protein increased with mycorrhiza inoculation under drought stress. Use of zinc sulfate under drought stress increased the concentration of copper, manganese, iron, zinc and grain percent of protein, but reduced the concentration of boron. Interaction effects of mycirrhiza fungi and zinc sulfate increased the concentration of all nutritional elements. The highest zinc concentration and grain percent of protein was observed in the treatments consisting of inoculation with mycorrhiza fungi + 25 kg ha-1 zinc sulfate  and irrigation at 50% and 75% water requirement, respectively.

کلیدواژه‌ها [English]

  • Drought stress
  • Mycorrhiza fungi
  • Nutritional elements
  • Percent of protein
  • Maize
  1. امامی، ع. 1375. روش های تجزیه گیاه. جلد اول. موسسه تحقیقات آب و خاک. نشریه شماره 982.
  2. بیگلویی، م. ح. ع، کافی قاسمی و م، جواهر دشتی. 1386. بررسی اثر تنش کم آبی برخصوصیات کمی و کیفی ذرت سیلویی و مقایسه آن با شرایط دیم رشت. خلاصه مقالات دهمین کنگره علوم زراعت و اصلاح نباتات ایران.
  3. ضیائیان، ع. 1385. بررسی اثر برهمکنش بر و روی بر عملکرد و اجزاء آن در ذرت دانه ای. مجموعه مقالات دهمین کنگره خاک ایران، کرج.
  4. عزیز زاده فیروزی، ف. م، بهمنیار. ع، مومنی و الف، قاسم پور. 1383. تأثیر کودهای پتاسیم و روی بر خصوصیات زراعی و مقادیر روی، آهن و فسفر در دو رقم گندم در خاک آهکی با روی پائین. مجموعه مقالات دهمین کنگره خاک ایران، کرج.
  5. علیزاده، الف. 1384. بررسی اثر مقادیر مختلف نیتروژن و تنش خشکی در مراحل مختلف رشد بر خصوصیات فیزیولوژیک، عملکرد و اجزاء عملکرد و میزان غلظت عناصر غذایی و نیز مطالعه همزیستی میکوریزایی در ذرت. رساله دکتری. دانشگاه آزاد اسلامی واحد علوم و تحقیقات اهواز.
  6. علیزاده، الف. و الف علیزاده. 1386. اثرات میکوریزا در شرایط متفاوت رطوبت خاک بر جذب عناصر غذایی در ذرت. مجله پژوهش در علوم کشاورزی. سال سوم. شماره اول. صفحه 101-108.
  7. ملکوتی، م. ج. و ح. مشایخی. 1376. ضرورت مصرف سولفات روی برای افزایش کمی و کیفی و غنی­سازی تولیدات کشاورزی در کشور. نشر آموزش کشاورزی. 13 صفحه.
  8. Arines, J. A. Vilarijo, and M. Sainz. 1989. Effect of different inoculum of VAM fungi on manganese content and content and concentration in red clover plants. 112:215-219.
  9. Auge, R. M. 2001. Water relations, drought and vesicular- arbuscular mycorrhiza Mycorrhiza, 11:3-42.
  10. Benjamin, J. G., L. K. Pokter, H. Duke, and L. R. Ahuja. 1997. Corn growth and nitrogen uptake with furrow irrigation and fertilizer bands. Agronomy Journal. 89:609-612.
  11. Cheong, Y.H., K. N. Kim, G. K. Pandey, R. Gupta, J. J. Grant, and S. Luan. 2003. CLB1, a calcium sensor that differentially regulates salt, drought, and cold responses in Arabidopsis. The Plant Cell. 15: 1833-1845.
  12. Elwan, L. M. 2001. Effect of soil water regimes and inoculation with mycorrhizae on growth and nutrients content of maize plants. Zagazig J Agric. Res. 28:163-172.
  13. Erdal, I., A. Yilmaz, S. Taban, S. Eker, B. Torun, and I. Cacmak. 2002. Phytic acid and phosphorous concentrations in seeds of wheat cultivars grown with and without zinc fertilization. J. Plant Nutrition. 25(1) 113-127.
  14. Fecenko, J. and O. Lozek. 1998. Maize grain yield formation in dependence on opplied zinc doses and is can tention soil . Rostilinna Vyroba UZP. 44(1): 15-18.
  15. George E., V. Romheld and H. Marschner. 1994. Contribution of mycorrhizal fungi to micronutrient uptake by plants. In: Manthey JA, Crowley DE, Luster DG(eds) Biochemistry of metal micronutrients in the rhizosphere. Lewis, London, pp. 93-109.
  16. George E., H. Marschner and  Jakobsen. 1995. Role of Arbuscular mycorrhizal fungi in uptake of phosphorus and nitrogen from soil. Critical Review of Biotechnol. 15:257-270.
  17. Ghazi, A.K., and B. M. John Zak. 2003. Field response of wheat to arbuscular mycorrhizal fungi and drought stress. Mycorrhiza, 14:263-269.
  18. Gildon A. and Tinker. P. B. 1983. Interactions of VAM infection and heavy metals in plants. In the effects of infection on uptake of copper. New Phytolo. 95:263- 268.
  19. Giovannetti, M. and B. Mosse. 1980. An evaluation of techniques to measure vesicular- arbuscular infection in roots. New  84:489-500.
  20. Hamel, C. A., and D. L. Smith 1991. Interspecific N- transfer and plant development in a mycorrhiza field- grown moisture soil Biology and Biochemistry 23:661-665.
  21. Kabata-Pendias, A., and H. Pendias. 1999. Biogeochemistry of trace elements. Warsaw, Poland: PWN.
  22. Khanam, D., M. A. U. Mridha and A. R. M. Solaiman. 2006. Comparative study of arbuscular mycorrhizal association with different agricultural crops among four areas of Bangladesh. J. Agric. 44(2):147-159.
  23. Koske, R. E. and J. N. Gemma. 1989. A modified procedure for staining roots to detect VA mycorrhizas. Mycol. Res.92:486-488.
  24. Kothari, S. K., H. Marschnnere, and U. Romheld. 1991a. Contribution of VA mycorrhizal hyphe in acquisition of phosphorus and zinc by maize. New 117:649-665.
  25. Kucey, R. M. N and H. H. Janzen, 1987. Effect of VAM and reduced butrient availability on growth and phosphors and micronutrient uptake of wheat and field beans under greenhouse. Plant Soil. 104:71-78.
  26. Jastrow, J. D., R. M. Miller and J. Lussenhop. 1998. Contributions of interacting biological mechanisms to soil aggregate stabilization in restored prairie. Soil Biol. Biochem. 30:905-
  27. Ocampo, A. M. 2004. Integrated nutrient manegment in corn. DAAIT NC Network.504P.
  28. Lambert, D. H., D. E. Baker, and G.H. Coler. 1979. The role of mycorrhiza in the interactions of phosphorus with zinc. Cooper and other elements. Soil Sci Soc. Ame. J.43:976-980.
  29. Marschner , H. 1993. Zinc in soil and plant , ED. A. D. Robon . Kluwer Academic Publishers Drodrcht the Netherlands, 55-77.
  30. Martins, A. L. C., O. C Batagha. O. A Camargo. and H. Contarella. 2003. Corn yield and uptake of Cu, Mn and Zn from sowage slodge- amend soil with and without liming Revista-Basilica- deciencia. V. 27:563- 574.
  31. P .S., R. B. Clark, , J. r. Ellis  and J. W. Maranvitte. 1990b. Mineral uptake and growth of sorghum colonized with VA mycorrhiza at varied soil phosphorus levels. Journal Plant Nutrition. 13: 843 - 856 
  32. Read, J., H. K. Koucheki and J. Hodgaon. 1976. Vesicular arbuscular mycorrhiza in natural vegetation system. New Phytol. 77:641-653
  33. Rhodes, L. H. and J. W. Gerdemann. 1978. Translocation of calcium and phosphate by external hyphe of vam. Soil Science . 126:125-126.
  34. H. 2005.  Effects of vam on host plant in condition of drought stress and its mechanisms .Electronic journal of Biology. 2005, vol. 1(3):44-48.
  35. Taiz, L. and E. Zeiger. 1998. Plant physiology (zed ed) sinager associates. Inc. Publisher. Sunderland Massa 757p.
  36. M. T. 1992. The role of mycorrhizal fungi and nonmycorrhizal microorganisms in iron nutrition of citrus soil Brok and Bioche.24: 857- 864.
  37. Troehza loynachan T. E. 2003. Endomycorrhizal fungi survival in continuous corn,soybean and fallow. Agronomy Journal. 95(1): 224-230.
  38. Vamerali, T. M . Saccomani. S. Mosca N. Guarise. and A. ganis. 2003. A comparison of root charactertics in relation to nutrient and water stress in two maize hybrids plant and soil.  157- 167.
  39. Zhow, X. M., Madramootoo. G.A., Mackenzie. A. F and D. L. Smith. 1997. Biomass production and nitrogen uptake in corn- rayegrass systems Agronomy Journal. 89:749-756.