توزیع شکلهای معدنی فسفر و ارتباط آن با ویژگیهای خاک در برخی خاکهای آهکی استان قزوین

نوع مقاله : مقاله پژوهشی

نویسندگان

1 دانشجوی دکتری دانشگاه تهران و عضو هیئت علمی مرکز تحقیقات کشاورزی و منابع طبیعی قزوین

2 دانشیار دانشکده کشاورزی دانشگاه تهران

3 استاد دانشکده کشاورزی دانشگاه شیراز

4 استادیار پژوهش موسسه تحقیقات خاک وآب

5 استادیار دانشکده کشاورزی دانشگاه تهران

چکیده

تعیین شکلهای معدنی فسفر خاک و ارتباط آنها با یکدیگر و ویژگیهای فیزیکی و شیمیایی خاکهای آهکی اطلاعات مفیدی را برای ارزیابی وضعیت فسفر و نیز حاصلخیزی خاک و تغذیه گیاه در اختیار می گذارد به منظور کسب چنین اطلاعاتی، فسفرکل و توزیع آن در شکلهای مختلف در 20 نمونه خاک استان قزوین به روش عصاره گیری متوالی تعیین و رابطه این شکلها با یکدیگر و با ویژگیهای خاک مطالعه شد. میزان فسفر کل 700 تا 1040 میلی گرم بر کیلوگرم خاک به دست آمد. شکلهای معدنی فسفر شامل دی کلسیم فسفات با میانگین 7/9 میلی گرم بر کیلوگرم، اکتا کلسیم فسفات با میانگین173 میلی گرم بر کیلوگرم، فسفات آلومینیوم با میانگین 33 میلی گرم بر کیلوگرم، فسفات آهن با میانگین 21 میلی گرم بر کیلوگرم، فسفر محبوس با میانگین 20 میلی گرم بر کیلوگرم، آپاتیت با میانگین 381 میلی گرم بر کیلوگرم، ظرفیت تبادل کاتیونی با میانگین 23 میلی اکی والان بر صد گرم خاک، آهک فعال با میانگین 5/9 درصد، رس خاک با میانگین32 درصد بدست آمد. شکلهای معدنی مختلف فسفر شامل فسفر محلول، دی کلسیم فسفات، فسفات آهن و فسفر محبوس با فسفر قابل جذب به روش اولسن روابط معنی دار و مثبتی را نشان دادند. همچنین بین شکلهای مختلف فسفر هم بستگی معنی داری به دست آمد که احتمالاً بیانگر وجود یک رابطه پویا بین آنها در خاک می باشد. بین درصد رس با فسفاتهای آهن و بین فسفر کل با اکتا کلسیم فسفات و فسفات های آلومینیوم و آپاتیت، بین ظرفیت تبادل کاتیونی با فسفاتهای آلومینیوم و فسفر محبوس روابط مثبت و معنی داری بدست آمد و بین میزان هدایت الکتریکی و اکتاکلسیم فسفات و فسفات آلومینیوم، بین درصد کربن آلی با آپاتیت و بین درصد آهک فعال با آپاتیت همبستگی معنی دار و منفی بدست آمد. در نهایت مشخص شدکه دامنه تغییرات اجزائ فسفر در خاکهای دشت قزوین زیاد می باشد. ضمناً با بدست آوردن همبستگی ویژگیهای خاک با فسفر عصاره گیری شده به روش اولسن که شاخصی برای فسفر قابل استفاده گیاه است، می توان در مدیریت توصیه های کودی بر نامه ریزی دقیق تری انجام داد.

کلیدواژه‌ها


عنوان مقاله [English]

Phosphorus Fractions of Selected Calcareous Soils of Qazvin Province and Their Relationships with Soil Characteristics

نویسندگان [English]

  • mehrzad mostashari 1
  • M. Muazardalan 2
  • N. Karimian 3
  • H. Rezai 4
  • H. M. Hosseini 5
1 Ph.D. Student College of Agric., Tehran Univ. Tehran, Iran and Scientific member of Agricultural Research Center of Qazvin, Iran
2 Assoc. Prof of Soil Sci., College of Agric, Tehran Univ. Tehran, Iran
3 Prof. of Soil Sc., College of Agric., Shiraz Univ. Shiraz, Iran
4 Assist. Prof of Soil Sc.,-Soil and Water Research Institute. Tehran, Iran
5 Assist. Prof of Soil Sci., College of Agric, Tehran Univ. Tehran, Iran
چکیده [English]

Information about phosphorus fractions  is important for evaluation of their status in soil and understanding  of soil chemistry that influence soil fertility. To  obtain such information, amount   and distribution of  P   in  different fractions  of 20 soil samples  of Qazvin province,  Iran were determined  by sequential  extraction   methods  and their relationships  with  each  other and with soil characteristics  were investigated. Total P ranged  from 700 to 1040 mg kg-1.  The clay ranged  from 18-52%,  CEC from 14.5-33.5  c mol(c)   kg-1 and the active CaCO3  from 2.9-19.4%. The amount of different P forms  i.e. dicalcium   phosphates (Ca2-P), octacalcium  phosphates (Ca8-P), Al- phosphates (Al-P),  Fe- phosphates (Fe-P), occluded-P  (O-P), and P as apatite (Ca10-P)  were found to range  from; 1.6-42.3,  72-314,  14.5-54.8,  8.4-34.8, 5.9-33.4 and 262-697 mg kg-1, respectively. Simple correlation coefficients showed that Olsen-P had a significant  correlation  with soluble-P,  Ca2-P, Fe-P and O-P. A significant  correlation  was also observed among different forms of P, which presumably  reflects  the existence of a dynamic relation  between the chemical forms  of an element  in soil. Clay with Fe-P  and O-P; total P with Ca8-P, Al-P and Ca10-P;  and CEC with Al-P and O-P had positive   and significant correlations.   However,   a  significantly negative  correlation   was found for electrical  conductivity   (EC) with Ca8-P  and Al-P; organic  carbon (OC) with Ca10-P, and active CaCO3  with Ca10-P.

کلیدواژه‌ها [English]

  • Calcareous soils
  • Qazvin province soils
  • P forms and Sequential extraction
  1. دهقانی، رمضانعلی، حسین شریعتمداری و حسین خادمی. 1382. اشکال مختلف فسفر معدنی خاک و تغییرات آنها در دو ردیف ا راضی در منطقه اصفهان. مجموعه مقالات نهمین کنگره علوم خاک ایران. صفحه 601 تا 604.
  2. محمود سلطانی، شهرام و عباس صمدی. 1382. شکل های مختلف فسفر در برخی خاک های آهکی استان فارس و رابطه آنها با ویژگی های فیزیکوشیمیائی خاک. مجله علوم و فنون کشاورزی و منابع طبیعی. سال هفتم. شماره سوم. صفحه 119 تا 127.
  3. Bakhieit-Said, M., and Dakermanji, H. 1993 . Phosphate adsorption and desorption by calcareous soils of Syria. Commun. Soil Sci. Plant Anal. Volume 24 pages 197-210.
  4. C.J.1962.Hydrometer method improved for making particle-size analysis of Soils.Agron.J. Volume 45 pages 464-465.
  5. Buchler, S., A. Oberson, I.M. Rao, D.K. Friesen. E. Frossard. 2002. Sequent ional phosphorus extraction of a (33) P-labeled Oxisol under contrasting agricultural systems. Soil Sci. Am.J. Volume 66, pages 868.
  6. Carreira, J.A., B. Vinegla, and K. Lajtha. 2006. Secondary CaCO3 and precipitation of P-Ca compounds control the retention of soil P in and ecosystems. Journal of Arid Environments. Volume 64, pages 460-473.
  7. Cassagne, N., M. Remaury, T. Gauquelin and A. Fabre. 2000. Forms and Profile distribution of soil phosphorus in alpine Inceptisols and spodosols (Pyrenees, France). Geaderma. Volume 95, pages 161-172.
  8. Chang, C., and S.R. Juo. 1963. Available phosphorus in relation to forms of phosphorus in soils. Soils Sci. Volume 95, pages 91-96.
  9. Cross, A.F., and W.H. Schlesinger. 2001. Biolgoycal and geochemica controls on phosphorus fractions in semiarid soils. Biogeochem. Volume 52 ,pages 155-172.
  10. Delgado, A. and J. Torrent. 2000. Phosphorus forms and desorption paterns in heavily fertilized calcareous and limed acid soils. Soil Sci. Soc. Am. J. Volume 64, pages 2031-2037.
  11. Delgado, A., J.R. Ruiz, M.C. Campillo, S. Kassem, And L. Andereu. 2000, Calcium and iron-related phosphorus in calcareous and calcareous marsh soil: sequential chemical fractionation and 31P nuclear magnetic resonance study. Comm. Soil Sci. Plant Anal. Volume 31, pages 2483-2499.
  12. Fabre, A., T. Gauqulin, F. Vilasante, A. Ortega and H. Puig. 2006. Phosphorus content in five representative landscape units of the lomas de Arequipa (Atacama Desert Pera). Catena, volume 65, pages 80-86.
  13. Ghani, A., S.S.S. Rajan and A. Lee. 1994. Enhancement of Phosphate rock Solubility through biological process, soil Biology and Biochemistry, Volume 26, pages 127-136.
  14. Guo, F., R.S. Yost, N.V. Hue, C.I. Evensen, and J.A. Silva. 2000. Changes in phosphorus fractions in soils under intensive plant growth. Soil Sci. Soc. Am. J. Volume 64, pages 1681-1689.
  15. Hedley, M.J., G.J.D. Kirk, & M.B. Santos. 1994. Phosphorus efficiency and the forms of phosphorus utilized by upland rice cultivars. Plant Soil, Volume 158, pages 53-62.
  16. Javid, S., and D.L. Rowell. 2002. A Laboratory study of the effect of time and temperature on the decline in Olsen P following phosphate addition to calcareous soils. Soil use management. Volume 18, pages 127-134.
  17. Jiang Baifan and Yichu Gu. 1989. A suggested fractionation scheme of inorganic phosphorus in calcareous soils. Fertilizer Res. Volume 20, pages 159-165.
  18. Kuo,S.1996.Phosphorus.In"Methods of soil analysis.Part3.Chemical methods". (Ed.D.L.Sparks) pages 551-574.(Soil Science Society of America: Madison, WI).
  19. Kuczak, C.N., E.C.M. Fernandes, J. Lehmann, M.A. Rondon and F.J. Luozao. 2006. Inorganic and organic phosphorus pools in earth worm cats (Glossos-colecidue) and a Brazilian rainforest oxisol. Soil Biology and Biochemistry. Volume 38, pages 553-560.
  20. Loeppert R.H.,L.Suarez .1996.Carbonate and gypsum. In "Methods of soil analysis. Part 3. chemical methods".(Ed.Dl.Sparks) pages 437-474.( Soil Science Society of America : Madison, WI).
  21. Nelson D.W.,and L.E.Sommers.1996.Total carbon, organic carbon and organic matter. In "Methods of soil analysis. Part 3. chemical methods".(Ed.Dl.Sparks) pages 961-1010. ( Soil Science Society of America : Madison, WI).
  22. Olsen, S.R., and L.E. Sommer. 1982. Phophorus. In Methods of soil Analysis: Chemical and microbiological Properties, part2. 2nd Agron. Monogr. No. 9. A. Klute (ed). ASA and SSSA, Madison WI, pages 403-430.
  23. A.L. 1982. Methods of soil Analysis. Part2. chemical and microbiological properties. Second edition. Madison. Wiscon sin USA.
  24. Pena, F. and J. Torrent. 1990. Predicting phosphate sorption in soils of Mediterranean regions. Ferti. Res. Volume 23, pages 173-179.
  25. Rayan, J., D. Curtin and M.A. Cheema. 1985. Significance of iron oxides and calcium carbonate particle size in phosphate sorption by calcareous soils. Soil Sci. Soc. Amer. J. Volume 48, pages 74-76.
  26. Rhoades J.D.1996.Salinity .Electrical conductivity and total dissolved solids In "Methods of soil analysis. part3.Chemical methods". (Ed.Dl.Sparks). pages 417-435. ( Soil Science Society of America : Madison, WI).
  27. Samadi, A. and R.J. Gilkes. 1998. Forms of phosphorus in virgin and fertilized calcareous soils of Western Australia. Aust. J. Soil Res. Volume 36, pages 585-601.
  28. Samadi, A. and R.J. Gilkes. 1999. Phosphorus transformations and their relation ships with calcareous soil properties of south Western Australia. Soil Sci. Soc. Am. J. Volume 69, pages 809-815.
  29. Samadi, A. 2003. A study on distribution of forms of phosphorus in calcareous soils of western Australia. J. Agric. Sci. Technol. Volume 5, pages 39-49.
  30. Samrit, P., C. Jongruk. S. Chairerk. & T. Nipon. 2002. Changes of some chemical properties, inorganic phosphate fraction and available P in some paddy soils in Thailand. 17th WCSS, 14-21 Aug., Bangkok, Thailand.
  31. Schmidt, H.P., S.W. Buol, and J. Kamprath. 1996. Soil phosphorus dynamics during seventeen years of continuous cultivation: fractionation analysis. Soil Sci. Soc. Am. J. Volume 60, pages 1168-1172.
  32. Schmidt, J.P., S.W. Buol, and J. Kamprath. 1997. Soil phosphorus dynamics during 17 years of continuous cultivation: A method to estimate long-term P availability Geoderma, Volume 78 ,pages 59-70.
  33. Selles, F., R.A. Hochham, J.E. Denardin, R.P. Zentner, and A. Faganelli. 1997. Distribution of phosphorus fractions in a Brazilian oxisol under different tillage systems. Volume 44, Pages 23-24.
  34. Sharpley, A.N., U. Singh. G. Uehara, and J. Kimble. 1989. Modeling soil and plant phosphorus dynamics in calcareous soils. And highly weathered soils. Soil Sci. Soc. Am. J. Volume 53, pages 153-158.
  35. Shuai, X., R.S. Yost. 2004. State-Space modeling to simplify soil phosphorus fractionation. Soil Sci. Soc. Am. J. Volume 68, pages 1437.
  36. Summer,M.E. and W.P.Miller.1996.Cation exchange capacity and exchange coefficients. In"Methods of soil analysis. part3.Chemical methods" (Ed.Dl.Sparks). pages 1201-1229.( Soil Science Society of America : Madison, WI).
  37. Sui, Y., M.L. Thompson, and C. Shang. 1999. Fractionation of phosphorus in a Mollisol amended with biosolids. Soil Sci. Soc. Am. J. Volume 63, pages 1174-1180.
  38. Tekchand and N.K. Tomar. 1994. Correlation of soil properties with phosphate fixation in some alkaline calcareous soils of north west India. Arid soil Res. Rehab. Volume 8, pages 77-91.
  39. Thomas G.W.1996. Soil pH and soil acidity . In" Methods of soil analysis. Part3.Chemical methods" (Ed.Dl.Sparks). pages 475-490.( Soil Science Society of America : Madison, WI).
  40. Watanabe,F.S.,and S.R.Olsen .1965. Test of an ascorbic acid method for determining phosphorus in water and NaHCO3 extracts from soil. Soil Sci. Soc.Am.Proc. Volume 29, pages 677-678.
  41. Yang, J., & J.S. Jacobsen. 1990. Soil inorganic phosphorus fractions and their uptake relationships in calcareous soil. Soil Sci. Soc. Am. J. Volume 54, pages 1666-1669.
  42. Yu, S., Z.L. He, P.J. Stoffella, D.V. Calvert, X.E. Yang, D.J. Banks and V.C. 2006. Surface run off phosphorus (p) loss in relation to phosphates activity and soil P fractions in Florida sandy soils under cirtus production. Soil Biolgoy and Biochemistry. Volume 38, pages 619-628.
  43. Zhang, T.Q., A.F. Machenzie, B.C. Laing, C.F. Drury. 2004. Soil test phosphorus and phosphorus fractions with long-term phosphorus addition and depletion. Soil Sci. Soc. Am. J., Volume 68, pages 519-529.