تخمین هدایت آبی اشباع و تخلخل موثر خاک با روش مسئله معکوس

نوع مقاله : مقاله پژوهشی

نویسندگان

1 دانشجوی دکتری آبیاری و زهکشی - دانشگاه تربیت مدرس، تهران

2 دانشیار گروه مهندسی‌سازه‌های آبی

3 استادیار گروه مهندسی‌آبیاری و زهکشی

4 دانشجوی دکتری آبیاری و زهکشی

چکیده

هدایت آبی اشباع و تخلخل مؤثر مهمترین پارامترها در تعیین فاصله زهکش‌ها هستند. این خصوصیات دارای تغییرات زمانی و مکانی بوده و تعیین مقدار میانگین آنها مشکل و هزینه‌بر می‌باشد. در تحقیق حاضر با حل عددی معادله دیفرانسیلی یک بعدی حاکم بر جریان اشباع و غیر ماندگار بطرف زهکش‌ها و انتخاب الگوریتم مناسب بهینه سازی، مدل معکوس عددی مناسب بسط و از آن جهت پیش بینی مقادیر میانگین هدایت آبی اشباع و تخلخل موثر استفاده گردید. در این تحقیق از روش حجم کنترل برای حل عددی معادله دیفرانسیلی حاکم استفاده شد. علاوه بر مدل عددی ، از مدل تحلیلی گلور – دام نیز به عنوان مدل شبیه سازی در روش مسئله معکوس استفاده گردید. با واسنجی و ارزیابی دو مدل معکوس عددی و تحلیلی، در نهایت دقت آنها در برآورد مقادیر هدایت آبی اشباع و تخلخل موثر با هم مقایسه شد.  نتایج نشان داد،  مقادیر هدایت آبی اشباع و تخلخل موثر برآوردی از روش‌مسئله معکوس باعث افزایش دقت مدل عددی در پیش‌بینی نیمرخ سطح ایستابی در اطراف زهکش‌ها می‌گردد. نتایج همچنین نشان داد که کارایی مدل عددی (93/0 ) در پیش بینی نیمرخ سطح ایستابی بهتر از مدل تحلیلی گلور-دام (75/0) است. 

کلیدواژه‌ها


عنوان مقاله [English]

Estimating Saturated Hydraulic Conductivity and Effective Porosity Using Inverse Method

نویسندگان [English]

  • P. Fathi 1
  • M. Jamal, 2
  • V. Samani 3
  • M. Kouchakzadeh 4
1 PhD student, Irrigation and Drainage, Tarbiat Modarres University
2 Associate Professor, Water Structures Department
3 Assistant Professor, Irrigation and Drainage Department and PhD student of Irrigation
4 Drainage Department and PhD student of Irrigation and Drainage Department, Tarbiat Modarres University, respectively
چکیده [English]

Hydraulic conductivity and effective porosity are the most important parameters in determining drain spacing. These properties have temporal and spatial variation and estimating average values for them is difficult and costly. In this study, one dimensional differential equation of unsteady flow towards drainage was numerically solved using the control volume approach. Then by selecting a proper optimization algorithm, an inverse model was developed, calibrated and verified. In addition to numerical model, Glover-Dumm analytical solution was also used for the development of an inverse model. Then saturated hydraulic conductivity and effective porosity were estimated using these numerical and analytical inverse models. Results indicated, that using values of hydraulic conductivity and effective porosity obtained from numerical inverse model compared to experimental ones, resulted in a more accurate prediction of water table by proposed numerical method. Also, the efficiency of the proposed numerical model ( 0.93 ) is higher than the analytical ones (0.75).

کلیدواژه‌ها [English]

  • Effective porosity
  • Inverse method
  • Saturated hydraulic conductivity
  • Subsurface drainage
  1. Biggar, J. W. and Nielsen, D. R., 1976. Spatial variability of the leaching charactrestics of a field soil. Water Resource Research. 12: 78-84
  2. Box, M. J., 1966. A comparison of several current optimization methods and use of transformation in constrained problems. The Computer Journal, 9: 67-77
  3. Chauhan, H. S. Schwap, G. O. and Hamdy, M. Y., 1968. Analytical and computer solutions of transient water tables for drainage of sloping lands. Water Resour. Res., 4: 573 – 579
  4. Dgne, J. H. and Hruska, S., 1983. In – situ determination of soil hydraulic properties during drainage. Soil Science Society of American Journal. 47: 619 – 624
  5. Greig, M. D., 1980. Optimization. Longman Publishing Company. New York.
  6. Homaee, M. Dirksen, C. and Feddes, R. A., 2002. Simulation of root water uptake I. Non-uniform transient salinity using different macroscopic reduction functions. Agricultural Water Management, 57: 89-109
  7. Hopmans, J. W. and Simunek, J., Revew of inverse estimattion of hydraulic properties. In : Van Genuchten, M. TH., Leij, F. J., Wu, L. (Eds), Proceedings of the International Workshop, characterization and measurement of the hydraulic properties of unsaturated porous media. University of California, Riverside, CA. PP: 713 – 724
  8. Jury, W. A., 1985. Spatial variability of soil physical parameters in solute migration. A critical literature review. ERRI Report no. EA-4228. Electric power research institute, Palo Alto, California.
  9. Kumar, S., Gupta, S. K. and Ram, S. 1994. Inverse technique for estimating transmissivity and drainable pore space utilizing data from subsurface drainage experiment. Agricultral Water Management. 26: 41-58
  10. Lorraine, E. F. and Selker, J. S., 2003. Use of porosity to estimate hydraulic properties of volcanic tuffs, Advances in Water Resources. 26: 5, 561 – 571
  11. Malik, R. S., Chauhan, P. S. and Dahiya, I. S., 1983. Spatial variability of infiltration parameters. J. Indian Soc. Soil Sci., 32: 644-648
  12. Nikam, P. J., 1989. Effect of evapotranspiration and vatiable drainable pore space on subsurface drainage design. M. Tech. Thesis, G. B. Pant University of Agricultural and Technology, Pantnagar, India ( unpublished )
  13. Pandey, R. S., Bhattacharya, A. K., Singh, O. P. and Gupta, S. K., 1992. Drawdown solutions with variable drainable porosity. Irrig. Drain. Eng., 118: 382-395
  14. Rao, K. V. G. K., Singh, O. P., Gupta, R. K., Kamra, S. K., Pendy, R. S. Kumbhare and Abrol, I. P., 1986. Drainage investigations for salinity control in Haryana. Central soil Salinity Research Institute, Karnal, Bull. N., 10: 95 pp.
  15. Ritter, A., Hupet, F., Carpena, R. M., Lambot, S. and Van Clooster, M., 2003. Using inverse methods for estimating soil hydraulic properties from field data as an alternative to direct methods. Agriculture Water Management. 59: 77-96
  16. Simmons, C. S., 1982. A stochastic – convective transport representation of dispersion in one – dimensional porous media system. Water Resour. Res., 18: 1193-1241.
  17. Van de Pol, R. M., Wierenga, P. J. and Nielsen, D. R., 1977. Solute movement in a field soil. Soil Sci. Soc. Am. J., 41: 10-13
  18. Van Schilfgaarde, J., 1974. Non-steady flow to drains. In: J. van Schilfgaarde (Editor), Drainage for Agriculture. American Soc. Of Agronomy, Madison, pp. 245-270
  19. Warrick, A. W. and Nielsen, D. R., 1980. Spatial variability of soil physical properties in the field. In: D. Hillel (Editor ), Application of Soil Physics. Academic Press, New York, pp. 319-344
  20. Zou, Z. Y., Young, M. H., Li, Z. and Wierenga, P. J., 2001. Estimation of depth averaged unsaturated soil hydraulic properties from infiltration expriments. Journal of Hydrology. 242: 26 – 42