اثر نوع بیوچار و زیست توده بر رشد گیاه نعناع فلفلی (Mentha (piperita L. در خاک آلوده به کادمیم

نوع مقاله : مقاله پژوهشی

نویسندگان

1 دانشجوی دکترای علوم و مهندسی خاک، دانشکده کشاورزی، دانشگاه لرستان، لرستان، ایران

2 دانشیار گروه علوم و مهندسی خاک، دانشکده کشاورزی، دانشگاه لرستان لرستان، ایران

3 عضو هیات علمی مرکز تحقیقات کشاورزی و منابع طبیعی استان لرستان، لرستان، ایران

4 استادیار گروه علوم و مهندسی خاک، دانشکده کشاورزی، دانشگاه لرستان، لرستان، ایران

چکیده

امروزه روش­های مختلفی برای کاهش اثرات منفی غلظت بالای فلزات سنگین موجود در خاک، استفاده می­شود. در این راستا، استفاده از بیوچار، روش ارزان و نسبتاً جدیدی برای کاهش سمیت فلزات سنگین می­باشد. در این پژوهش، به منظور بررسی تأثیر بیوچارهای مختلف، به عنوان بهسازهای خاک، بر بهبود رشد گیاه نعناع فلفلی در خاک آلوده به کادمیم آزمایشی گلدانی به صورت طرح فاکتوریل در قالب طرح کاملاً تصادفی با سه عامل شامل سطوح آلودگی کادمیم (50 و 100 میلی‌گرم برکیلوگرم)، نوع ماده آلی ( خاک اره صنوبر، بیوچار خاک اره تهیه شده در دمای 300 و 600 درجه سلسیوس، کاه گندم، بیوچار کاه گندم در دمای 300 و 600 درجه سلسیوس) و مقدار ماده آلی (صفر، 2 و 4 درصد وزنی) بر ویژگی‌های رشدی و عملکرد اسانس گیاه نعناع فلفلی انجام شد. نتایج نشان داد که با افزایش سطح کادمیم، مقادیر کلروفیل a، کلروفیل b، کلروفیل کل، میزان کاروتنوئید، میزان فتوسنتز، درصد اسانس و عملکرد اسانس به ترتیب کاهشی برابر 6/37%، 9/54%، 9/42%، 6/31%، 5/40%، 8/34% و 3/83% را نشان دادند. نتایج حاکی از اثرات مثبت بیوچارها در کاهش اثرات منفی کادمیم بود. مقایسه تیمار کادمیم به تنهایی با تیمارهای کادمیم همراه بیوچار نشان دادکه بیوچار علفی (کاه گندم) نسبت به سایر تیمارها توانایی بیشتری در کاهش اثرات منفی کادمیم دارد. در اغلب موارد، بیوچار کاه گندم تولید شده در دو دمای 300 و 600 درجه سلسیوس، در سطوح 2% و 4% برتری نسبی محسوسی در بهبود رشد و عملکرد گیاه، نسبت به سایر تیمارها داشت. بیشترین درصد اسانس مربوط به بیوچار کاه گندم 600 درجه سلسیوس و سطح 2% و 50 میلی گرم بر کیلوگرم کادمیم با 86% افزایش نسبت به شاهد (بدون کاربرد ماده آلی) بدست آمد. همچنین، این تیمار باعث افزایش 20 درصدی وزن تر اندام هوایی نسبت به شاهد گردید. میزان جذب نیتروژن، پتاسیم و فسفر در این تیمار به ترتیب 100%، 73% و 76% افزایش نسبت به شاهد نشان داد. به طور کلی، نتایج بدست آمده بیانگر پتانسیل بالای بهساز بیوچار کاه و کلش گندم در افزایش و بهبود رشد گیاه نعناع فلفلی در خاک آلوده به کادمیم، نسبت به سایر مواد آلی استفاده شده در این پژوهش بود.

کلیدواژه‌ها

موضوعات


عنوان مقاله [English]

Effect of Different Feedstock and Their Biochars on the Growth of Peppermint (Piperita L.) in Cadmium-Contaminated Soil

نویسندگان [English]

  • Fahime Baharvandi 1
  • Mohammad Feizian 2
  • Samad Abdi 3
  • Afsaneh Alinejadian 4
1 Ph.D. Student Department of Soil Science, College of Agriculture, Lorestan University, Lorestan, Iran.
2 Corresponding Author, Associate Professor, Department of Soil Science, College of Agriculture, Lorestan University, Lorestan, Iran
3 ssistant Professor of Soil and Water research institute, Lorestan Agriculture and Natural Resources Research and Education Center, Agriculture Research Lorestan, Iran
4 Assistant Professor, Department of Soil Science, College of Agriculture, Lorestan, Iran
چکیده [English]

Today, various methods are used to reduce the negative effects of high concentration of heavy metals in the soil. In this regard, the use of biochar is a relatively cost effective and new method to reduce the toxicity and mobility of heavy metals. In this study, in order to investigate the effect of biochar on improving peppermint plant growth in cadmium-contaminated soil, a pot experiment was conducted using a factorial design in the form of a completely randomized design. Treatments included three factors of cadmium (Cd) levels (50 and 100 mg/kg), the type of organic matter (spruce sawdust, sawdust biochar prepared at 300 and 600 °C, wheat straw, wheat straw biochar at 300 and 600 °C) and the amount of organic matter (zero, 2%, and 4 % by weight). Growth characteristics and performance of peppermint plant essential oil were determined. The results showed that with increasing Cd level, there was  a reduction in chlorophyll a 37.6%, chlorophyll b 54.9%, total chlorophyll 42.9%, carotenoid level 31.6%, photosynthesis rate 40.5%, essential oil percentage 34.8%, and essential oil content showed 83.3% reduction. The results indicate the positive effects of biochar in reducing the negative effects of Cd. Comparison of Cd treatment alone with Cd treatments along with biochar showed that herbal biochar had a greater ability to reduce the negative effects of Cd than other treatments. In most cases, wheat straw biochar at two temperatures of 300 and 600 degrees at the level of 2% and 4% was superior in improving plant growth and performance. The highest percentage of essential oil belonged to wheat straw biochar at 600 oC and level of 2% and 50 mg/kg of Cd with 86% increase compared to the control, with an increase of 20% in the weight of aerial parts. The amount of N, K, and P absorption in this treatment increased by 100%, 73%, and 76%, respectively, compared to the control. The obtained results show the ability of straw and wheat stubble biochar to increase and improve plant growth compared to other organic materials used in this study.

کلیدواژه‌ها [English]

  • Peppermint essential oil
  • Soil amelioration
  • Nutrients uptake
  • Carotenoid
  • Mentha
  • Biochar
  1. امانی، م.، علیزاده سالطه، س. 1399. تأثیر تنش فلزات سنگین (کادمیوم) بر ویژگی‌های مورفولوژیکی و فیزیولوژیکی گیاهان دارویی مختلف. فصل‌نامه علمی ایمنی زیستی. ۱۱ (۴) :۷۶-۴۹.
  2. امیدبیگی، ر.، 1379 .رهیافتهای تولید و فـرآوری گیاهـان دارویـی (جلد سوم). انتشارات آستان قدس رضوی، مشهد، 397 صفحه.
  3. بوالحسنی، ز.، ع. م. رونقی.، ر. قاسمی.، و م. زارعی. 1398. اثر بیوچار پوسته برنج و باکتری محرک رشد بر عملکرد و ترکیب شیمیایی اسفناج در خاک تحت تنش شوری. نشریه پژوهش­های خاک (علوم آب و خاک). الف :33 (3) : 335-349.
  4. خیری, ع., ه. توری., و ن. مرتضوی. 1396. تأثیر تنش خشکی و جاسمونیک اسید روی صفات مورفولوژیکی و فیتوشیمیایی نعناع فلفلی (Mentha piperita L.). تحقیقات گیاهان دارویی و معطر ایران33(2): 268-280.
  5. عباس پور، ف.، ح.ر. اصغری.، پ. رضوانی مقدم.، و ح. عباسدخت. 1396. تاثیر کاربرد بیوچار در بهبود برخی ویژگی های خاک و رشد گیاه دارویی سیاه دانه (Nigella sativa L.) در شرایط تنش آبی،کنفرانس بین المللی علوم کشاورزی، گیاهان دارویی و طب سنتی،مشهد،
  6. عرب بافرانی, ز., م.ج. قانعی بافقی., و م. شیرمردی. 1399. اثر بیوچار ضایعات شاخ و برگ درخت پسته بر خصوصیات رشدی گیاه گلرنگ. مجله مدیریت خاک و تولید پایدار.10(3):73-94.
  7. فخرآبادی, ح,، و م. خوش سیمای چنار. 1400. اثر کم‌آبیاری و بیوچار بر روی خصوصیات کمی و کیفی گیاه دارویی ریحان. نشریه آبیاری و زهکشی ایران. 15(4):941-954.
  8. کرمی نیا، ف.، ن. رنگزن.، ح. نادیان.، و ا. لطفی جلال آبادی. 1398. اثر کمپوست مصرف شده قارچ و بیوچار آن بر عملکرد گیاه جعفری تحت تنش شوری. تحقیقات آب و خاک ایران (علوم کشاورزی ایران), 50(6 ), 1453-1465.
  9. کوشکی, ا., ا. عالی نژادیان بیدآبادی., و ع. ملکی. 1400. بررسی اثر بیوچار پوسته برنج و رژیم‌های مختلف آبیاری بر رشد، درصد اسانس و غلظت برخی عناصر غذایی در نعناع فلفلی (Mentha piperita L.) . تحقیقات گیاهان دارویی و معطر ایران37(5): 733-752.
  10. Ahmad, M., A.U. Rajapaksha., J.E. Lim., B.Y. Kim., J.H. Ahn., Y.H. Lee., M.I. Al-Wabel., S.E. Lee., and S.S. Lee .2016. Lead and copper immobilization in a shooting range soil using soybean stover- and pine needle-derived biochars: chemical, microbial and spectroscopic assessments. Journal of Hazardous Materaials. 301:179–186
  11. Al- Khateeb W., and Al-Qwasemeh H. 2014. Cadmium, copper and zinc toxicity effects on growth, proline content and genetic stability of Solanum nigrum L., a crop wild relative for tomato; comparative study. Physiology and Molecular Biology of Plants, 20(1): 31-39.
  12. Alcántara E., Romera F. J., Cañete M., and De la Guardia M. D. 1994. Effects of heavy metals on both induction and function of root Fe (lll) reductase in Fe-deficient cucumber (Cucumis sativus L.) plants. Journal of Experimental Botany, 45(12): 1893-1898.
  13. Ali, N., S. Khan., Y. Li., N. Zheng., and H. Yao. 2019. Influence of biochars on the accessibility of organochlorine pesticides and microbial community in contaminated soils. Science of the Total Environment. 647: 551–560.
  14. Cao X., and Harris W. 2010. Properties of dairy-manure-derived biochar pertinent to its potential use in remediation. Bioresource technology. 101(14), 5222-5228.
  15. Carter, S., S. Shackley., S. Sohi., T. Suy., and S. Haefele. 2013. The impact of biochar application on soil properties and plant growth of pot grown lettuce (Lactuca sativa) and cabbage (Brassica chinensis). Agronomy, 3: (2) 404-418.
  16. cheeken manure in different temperatures, on chemical properties of a calcareous soil. Journal of Water and Soil Science, 75: 73-86. (In Persian with English abstract).
  17. Chintala R., Mollinedo J., Schumacher T.E., Malo D.D., and Julson J.L. 2014a. Effect of biochar on chemical properties of acidic soil. Archives of Agronomy and Soil Science, 60: 393–404.
  18. Dai, Z. M., A. Enders., J. Rodrigues., K. Hanley., P. Brookes., J. M. Xu. 2018. Soil fungal taxonomic and functional community composition as affected by biochar properties. Soil Biology and Biochemistry. 126: 159–167.
  19. Fajardo, C., G. Costa., M. Nande., P. Botías., J. García-Cantalejo., and M. Martín. 2019. Pb, Cd, and Zn soil contamination: monitoring functional and structural impacts on the microbiome. Applied Soil Ecology. 135 : 56-64.‏
  20. Fodor E., Szabó-Nagy A., and Erdei L. 1995. The effects of cadmium on the fluidity and H+-ATPase activity of plasma membrane from sunflower and wheat roots. Journal of plant physiology, 147(1), 87-92.
  21. Galeotti, N., L.D.C. Mannelli., G. Mazzanti., A. Bartolini., and C. Ghelardini. 2002. Menthol: a natural analgesic compound. Neuroscience Letters. 322(3): 145-148.
  22. Gamareldawla, H.D., B.Agbnaa., S. Donglia., Z. Liu., A. Nazar., S.G. Elshikh., and C.T. Luis. 2017. Effect of irragation and biochar on the growth, yeild and quality of tomato. Scientia Horticulturae. 245: 667-675.
  23. Glaser, B., J. Lehmann., and W. Zech. 2002. Ameliorating physical and chemical properties of highly weathered soils in the tropics with charcoal: A Review. Biology and Fertility of Soils, 35: 219-230.
  24. Goncalvez, J., Beker, A., Cargnelutti, D., Tabaldi, L., Pereira L., Battisti,V., Spanevello, R., Morsch ,V., Nicoloso, F. and Schetinger, M. 2007. Cadmium toxicity causes oxidative stress and induces response of the antioxidant system in cucumber seedling. Brazilian Journal Plant Physiology. 19 (3): 223-232.
  25. Ho S. H., Zhu S., and Chang J. S. 2017. Recent advances in nanoscale-metal assisted biochar derived from waste biomass used for heavy metals removal. Bioresource technology. 246, 123-134.
  26. Kabiri, P., H. Motaghian., and A. Hosseinpur. 2021. Impact of biochar on release kinetics of Pb (II) and Zn (II) in a calcareous soil polluted with mining activities. Journal of Soil Science and Plant Nutrition. 21(1), 22-34.‏
  27. Kim, H. S., K. R. Kim., H. J. Kim., J. H. Yoon., J. E. Yang., Y. S. , G. Owens., and K. H. Kim. 2015. Effect of biochar on heavy metal immobilization and uptake by lettuce (Lactuca sativa L.) in agricultural soil. Environmental Earth Sciences. 74(2), 1249-1259.‏
  28. Kim, K. H., J. Y. Kim., T. S. Cho., and J. W. Choi. 2012. Influence of pyrolysis temperature on physicochemical properties of biochar obtained from the fast pyrolysis of pitch pine (Pinus rigida). Bioresource technology, 118: 158-162.‏
  29. Lehmann, J., and S. Joseph. 2015. Biochar for environmental management: science, technology and implementation, Routledge. 976 p.
  30. Li M., Lou Z., Wang Y., Liu Q., ZhangY., Zhou J., and Qian G. 2015. Alkali and alkaline earth metallic (AAEM) species leaching and Cu (II) sorption by biochar. 119, 778-785.
  31. Li, H., X. Dong., E. B. da Silva., L. M. de Oliveira., Y. Chen, and L. Q. Ma. 2017. Mechanisms of metal sorption by biochars: biochar characteristics and modifications. Chemosphere. 178: 466-478.‏
  32. Liang M., Lu L., He H., Li J., Zhu Z., and Zhu Y. 2021. Applications of Biochar and Modified Biochar in Heavy Metal Contaminated Soil: A Descriptive Review. Sustainability, 13(24), 14041.
  33. Liu, M., Z. Zhao., L. Wang., and Y. Xiao. 2021. Influences of rice straw biochar and organic manure on forage soybean nutrient and Cd uptake. International Journal of Phytoremediation. 23(1): 53-63.‏
  34. Lu, K., X.Yang., G. Gielen., N. Bolan., Y. S. Ok., N. K. Niazi., S. Xu., Y. Guodong., X. Chen., X. Zhang., D. Liu., Z. Song., X. Liu., and H. Wang. 2017. Effect of bamboo and rice straw biochars on the mobility and redistribution of heavy metals (Cd, Cu, Pb and Zn) in contaminated soil. Journal of environmental management, 186: 285-292.‏
  35. Major, J., M. Rondon., D. Molina., J. Riha., and J. Lehmann. 2010. Maize yield and nutrition during 4 years after biochar application to a  Colombian savanna oxisol. Plant and soil. 333: 1-2. 117-128.
  36. Mathys W. 1975. Enzymes of heavy‐metal‐resistant and non‐resistant populations of Silene cucubalus and their interaction with some heavy metals in vitro and in vivo. Physiologia Plantarum,33(2): 161-165.
  37. Mia, S., M. Abuyusuf., M.A. Sattar., A.B. Islam., T. Hiemstra., and S. Jeffery. 2014. Biochar amendment for high nitrogen and phosphorous bioavailability and its potentiality of use in Bangladesh agriculture: a review. The Patuakhali Science and Technology University. 5: 145-156.
  38. Mukherjee, A. and A. R. Zimmerman. 2013. Organic carbon and nutrient release from a range of laboratory-produced biochars and biochar–soil mixtures. Geoderma, 193, 122-130.‏
  39. Nagajyoti, P.C., Sreekanth, T.V.M. and Lee, K.D. 2010. Heavy metals, occurrence and toxicity for plants: a review. Environmental Chemistry Letters. 8 (3): 199–216.
  40. Najafi ghiri M. 2014. The effect of different biochars on some soil properties and availability of some nutrients in a calcareous soil. Journal of Soil Researches, 29(2): 351-358.
  41. Nigussie, A., E. Kissi., and M. Misganaw. 2012. Effect of biochar application on soil properties and nutrient uptake of lettuces (Lactuca sativa) grown in chromium polluted soils. American-Eurasian Journal of Agricultural and Environmental Sciences, 12 (3): 369-376.
  42. Olsen, S.R., C.V. Cole., F.S. Watanabe., and L.A. Dean. 1954. Estimation of available phosphorus in soil by extraction with sodium bicarbonate. United States Department of Agriculture. Circular, Washington DC, 939: 1-18.
  43. Phaniendra A., Jestadi D. B., and Periyasamy L. 2015. Free radicals: properties, sources, targets, and their implication in various diseases. Indian journal of clinical biochemistry. 30(1): 11-26.
  44. Rajkovich, S., Enders, A., Hanley, K., Hyland, C., Zimmerman, A. R., and Lehmann, J. 2011. Corn growth and nitrogen nutrition after additions of biochars with varying properties to a temperate soil. Biology and Fertility of Soils, 48(3): 271-284.
  45. Ramos, I., Esteban, E., Lucena, J.J. and Garate, A. ,2002. Cadmium uptake and subcellular distribution in plants of Lactuca spp. Cd-Mn intraction. Plant Science. 162 (5): 761-767.
  46. Rodriguez Tejerina, V.M. 2010. Biochar as a Strategy for Sustainable Land Management, Poverty Reduction and Climate ChangeMitigation/Adaptation? Thermolysis of lignin for value-added products.
  47. Schmidt, H.P., C. Kammann., C. Niggli., M.W. Evangelou., K.A. Mackie., and S. Abiven. 2014. Biochar and biocharcompost as soil amendments to a vineyard soil: Influences on plant growth, nutrient uptake, plant health and grape quality. Agriculture, Ecosystems and Environment, 191: 117-123.
  48. Smeal, D., and H. Zhang. 1994. Chlorophyll meter evaluation for nitrogen management in corn. Communications in Soil Science and Plant Analysis, 25: 9-10. 1495-1503.
  49. Smider, B. and B. Singh. 2014. Agronomic performance of a high ash biochar in two contrasting soils. Agriculture, Ecosystems and Environment: 191, 99-107.‏
  50. Tan Z., Wang Y., Zhang L., and Huang Q. 2017. Study of the mechanism of remediation of Cd-contaminated soil by novel biochars. Environmental Science and Pollution Research, 24(32), 24844-24855.
  51. Tang, J., M. He., Q. Luo., M. Adeel., and F. Jiao. 2020. Heavy Metals in Agricultural Soils from a Typical Mining City in China: Spatial Distribution, Source Apportionment, and Health Risk Assessment. Polish Journal of Environmental Studies. 29(2):1379–1390.
  52. Tanure, M.M.C., L.M. da Costa., H.A. Huiz., R.B.A. Fernandes., P.R. Cecon., J.D.P. Junior., and J.M.R. da Luz. 2019. Soil water retention, physiological characteristics, and growth of maize plants in response to biochar application to soil. Soil and Tillage Research, 192: 164-173.
  53. Van Zwieten, L., S. Kimber., S. Morris., K.Y. Chan., A. Downie., J. Rust., S. Joseph., and A. Cowie. 2010. Effects of biochar from slow pyrolysis of papermill waste on agronomic performance and soil fertility. Plant and soil. 327(1): 235-246.
  54. Wang, P., H. Chen., P. M. Kopittke., and F. J. Zhao. 2019. Cadmium contamination in agricultural soils of China and the impact on food safety. Environmental pollution, 249, 1038-1048.‏
  55. Wang, S., Y. Xu., N. Norbu, and Z. Wang. 2018. Remediation of biochar on heavy metal polluted soils. In IOP Conference Series: Earth and Environmental Science (Vol. 108, No. 4, p. 042113). IOP Publishing.‏
  56. Westermann, R., K. Spies., G. Stahl, and F. W. Hesse. 1996. Relative effectiveness and validity of mood induction procedures: A meta‐ European Journal of social psychology, 26(4), 557-580.‏
  57. Woolf, D., J. E. Amonette., F. A. Street-Perrott., J. Lehmann., and S. Joseph. 2010. Sustainable biochar to mitigate global climate change. Nature communications, 1(1), 1-9.‏
  58. Wu, B., Z. Wang., Y. Zhao., Y. Gu., Y. Wang., J. Yu., and H. Xu. 2019. The performance of biochar-microbe multiple biochemical material on bioremediation and soil micro-ecology in the cadmium aged soil. Science of the total environment. 686 : 719-728.
  59. Wu, H., C. Lai., G. Zeng., J. Liang., J. Chen., J. Xu., J. Dai., X. Li., J. Liu., M. Chen., L. Lu., L. Hu, and J. Wan. 2017. The interactions of composting and biochar and their implications for soil amendment and pollution remediation: a review. Critical reviews in biotechnology, 37(6), 754-764.‏
  60. Xu X., ZhaoY., Sima J., Zhao L., Mašek O., and Cao X. 2017. Indispensable role of biochar-inherent mineral constituents in its environmental applications: A review. Bioresource Technology. 241, 887-899.
  61. Yuan, C., F. Li., W. Cao., Z. Yang., M. Hu., and W. Sun. 2019. Cadmium solubility in paddy soil amended with organic matter, sulfate, and iron oxide in alternative watering conditions. Journal of hazardous materials, 378, 120672.‏
  62. Zhang, A., Y. Liu., G. Pan., Q. Hussain., L. Li., J. Zheng., and X. Zhang. 2012. Effect of biochar on maize yield and greenhouse emission from a soil organic carbon poor calcareous loamy soil from Central China Plain. Plant and soil. 351(1): 263-275
  63. Zhang, Q.Z., X.H. Wang., Z.L. Du., X.R. Liu., and Y.D. Wang. 2013. Impact of biochar on nitrate accumulation in an alkaline soil. Soil Research. 51(6): 521-528.
  64. Zolfi M., Rownaghi A.M., Karimian N., Ghasemi R., and Yasrebi J. 2016. The effect of biochars produced of