شیمی ‏سنجی عناصر بالقوه سمی در خاک سطحی کلان‌شهر همدان

نوع مقاله : مقاله پژوهشی

نویسندگان

1 گروه محیط‌زیست، واحد همدان، دانشگاه آزاد اسلامی، همدان، ایران.

2 ﮔﺮوه ﻣﺤﻴﻂ‌زﻳﺴﺖ، واﺣﺪ ﻫﻤﺪان، داﻧﺸﮕﺎه آزاد اﺳﻼﻣﻲ، ﻫﻤﺪان، ایران.

چکیده

آلودگی خاک شهری به آلاینده‌های سمی به‌عنوان مانعی مهم برای توسعه پایدار بوده و چالش و نگرانی مشترک ‌محیط‏زیستی و بهداشتی بوم‏سامانه‏های شهری در سراسر جهان است. از این‌رو، این پژوهش با هدف تعیین محتوی، تغییرات مکانی، آلودگی و سمیت عناصر بالقوه سمی (آرسنیک، سرب، کادمیم، مس و نیکل) خاک سطحی کلان‌شهر همدان در سال 1402 انجام یافت. به این منظور، در مجموع 108 نمونه خاک سطحی (0-20 سانتی‌متری) از 12 مکان با کاربری‌های صنعتی، تجاری و مسکونی (4 مکان نمونه‏برداری از هر کاربری) برداشت شد. پس از آماده‏سازی و هضم اسیدی نمونه‏ها در آزمایشگاه، محتوی عناصر در آن‌ها به‌روش طیف‏سنجی نوری پلاسمای جفت‌شده القایی (ICP-OES) خوانده شد. مقادیر شاخص‏های فاکتور آلودگی (CFبار آلودگی (PLI)، میانگین ضریب متوسط حدود اثر (mERM-Q) و میانگین ضریب سطح احتمالی اثر (mPEL-Q) محاسبه گردید. تغییرات مکانی محتوی عناصر نشان‌دهنده تأثیر فعالیت‌های انسانی به‌ویژه با منشأ صنعتی و ترافیک بر آلودگی خاک بود. محاسبه شاخص CF نشان داد که آلودگی عناصر آرسنیک، سرب، کادمیم، مس و نیکل از "کم" تا "زیاد" متغیر بود. همچنین، میانگین مقادیر شاخص بار آلودگی با 0/1، بیان‌گر شرایط آلودگی "متوسط" در منطقه مورد مطالعه بود. نتایج ارزیابی سمیت محیطی و زیستی نشان داد که در همه مناطق مقادیر شاخص‌های mERM-Q و mPEL-Q برای عناصر آرسنیک، سرب، کادمیم، مس و نیکل با 21% احتمال سمیت در طبقه "سمیت متوسط" قرار داشتند. با استناد به نتایج می‌توان اذعان داشت که فعالیت‌های صنعتی و ترافیکی به‌عنوان منبع اصلی و عمده عناصر مورد مطالعه نقش مهمی در آلودگی خاک شهر همدان دارند. لذا، به‏‏منظور حفظ سلامت محیط و شهروندان نسبت به پایش دوره‌ای و منظم خاک سطحی شهری آلوده به عناصر بالقوه سمی و ارزیابی ریسک بوم‌شناختی و سلامت مواجهه با عناصر به‌ویژه در مناطق با آلودگی زیاد توصیه می‌شود.

کلیدواژه‌ها

موضوعات


عنوان مقاله [English]

Chemometric of potentially toxic elements in surface soils of Hamedan Megacity

نویسندگان [English]

  • Nayereh Sadat Hosseini 1
  • Soheil Sobhan Ardakani 2
1 Department of the Environment, Ha.C., Islamic Azad University, Hamedan, Iran.
2 Department of the Environment, Ha.C., Islamic Azad University, Hamedan, Iran.
چکیده [English]

Contamination of urban soil with toxic pollutants as an important obstacle for sustainable development is a challenge and common environmental and health concern of urban ecosystems all over the world. Therefore, this study was performed to evaluating the concentrations, spatial variations, pollution and toxicity of As, Cd, Cu, Ni, and Pb in surface soil of Hamedan Megacity in 2023. In so doing, a total of 108 urban surface soil samples (0-20 cm) were collected from 12 sampling sites with different land uses including industrial, commercial, and residential (4 sites of each land uses). After preparation and acid digestion of samples in the lab, tested element concentrations were determined using inductively coupled plasma-optical emission spectroscopy (ICP-OES). Also, contamination factor (CF), pollution load index (PLI), the mean effect range median quotient (mERM-Q) and the mean probable effect level quotient (mPEL–Q) indices were calculated. The results of the spatial variation of the element contents showed that the impact of human activities, especially industrial origin and traffic. The results of calculating the CF represented that the contamination of As, Cd, Cu, Ni and Pb were "low" to "high". Also, the mean values of IPI with 1.00 displayed "moderate" contamination conditions in the study area. Besides, the mean values of mERM-Q and mPEL-Q of As, Cd, Cu, Ni and Pb indicated that the elemental probability toxicity of soil samples was 21% and in the "moderate toxicity" category. Based on the results, it can be acknowledged that industrial and traffic activities as the main and primary origin of these elements had significantly contributed to their pollution in soil of Hamedan city. In conclusion, regular monitoring the content of PTEs and ecological and health risk assessment of contaminated urban surface soil with PTEs are recommended in order to maintain the health of the environment and citizens.

کلیدواژه‌ها [English]

  • Urban soil
  • Toxic Pollutants
  • Pollution index
  • Environmental toxicity
  1. حسینی، ن. و س. سبحان اردکانی. 1400. ارزیابی اثر حجم ترافیک بر آلودگی و خطر بالقوه بوم‌شناختی عناصر روی، سرب و نیکل در خاک‏های حاشیه برخی جاده‏های برون شهری همدان. پژوهش های خاک، (2): 119-134.
  2. حسینی، ن. و س. سبحان اردکانی. 1401. ارزیابی آلودگی و خطر بالقوه بوم‌شناحتی عناصر سرب، کادمیم، کروم و نیکل در خاک‌ سطحی حاشیه برخی جاده‌های کلان‌شهر همدان. فصلنامه مهندسی بهداشت محیط، 9(3): 349-364.
  3. حسینى ن. و س. سبحان اردکانى. 1402. ارزیابى محتوى و منشأ آلودگى فلزات سنگین در خاک سطحی حاشیه جاده: مطالعه موردى. فصلنامه پژوهش در بهداشت محیط، 9(2): 197-214.
  4. سبحان اردکانی، س. و ن. حسینی. a1402. بررسی آلودگی و مخاطره سلامت برخی عناصر بالقوه سمی در خاک سطحی محیط کنار جاده‏‏ای. تحقیقات کاربردی خاک، 11(4): 112-125.
  5. سبحان اردکانی، س. و ن. حسینی. b1402. ارزیابی سمیت و خطر سلامت مرتبط با عناصر بالقوه سمی (روی، سرب، کادمیم و کروم) خاک حاشیه جاده ‏‏ای شهر همدان. محیط شناسی، 49(1): 71-90.
  6. عظیم زاده، ب. و ح. خادمی. 1392. تخمین غلظت زمینه برای ارزیابی آلودگی برخی فلزات سنگین در خاک های سطحی بخشی از استان مازندران. آب و خاک، 27(3): 548-559.
  7. Adimalla, N., Chen, J. and Qian, H. 2020. Spatial characteristics of heavy metal contamination and potential human health risk assessment of urban soils: A case study from an urban region of South India. Ecotoxicology and Environmental Safety, 194: 110406.
  8. Bernardino, C. A., Mahler, C. F., Santelli, R. E., Freire, A. S., Braz, B. F. and Novo, L. A. 2019. Metal accumulation in roadside soils of Rio de Janeiro, Brazil: impact of traffic volume, road age, and urbanization level. Environmental Monitoring and Assessment, 191(3): 156.
  9. Bineshpour, M., Payandeh, K., Nazarpour, A. and Sabzalipour, S. 2021. Status, source, human health risk assessment of potential toxic elements (PTEs), and Pb isotope characteristics in urban surface soil, case study: Arak city, Iran. Environmental Geochemistry and Health, 43: 4939-4958.
  10. Cai, L. M., Jiang, H. H. and Luo, J. 2019. Metals in soils from a typical rapidly developing county, Southern China: levels, distribution, and source apportionment. Environmental Science and Pollution Research, 26: 19282-19293.
  11. Cai A, Zhang, H., Zhao, Y., Wang, X., Wang, L. and Zhao, H. 2022. Quantitative source apportionment of heavy metals in atmospheric deposition of a typical heavily polluted city in Northern China: Comparison of PMF and UNMIX. Frontiers in Environmental Science, 10: 950288.
  12. Dat, N. D., Nguyen, V. T., Vo, T. D. H., Bui, X. T., Bui, M. H., Nguyen, L. S. P., Tran, A. T. K., Nguyen, T. T. A., Ju, Y. R. and Huynh, T. M. T. 2021. Contamination, source attribution, and potential health risks of heavy metals in street dust of a metropolitan area in Southern Vietnam. Environmental Science and Pollution Research, 28(36): 50405-50419.
  13. Dong, C., Zhang, H., Yang, H., Wei, Z., Zhang, N. and Bao, L. 2023. Quantitative Source Apportionment of Potentially Toxic Elements in Baoshan Soils Employing Combined Receptor Models. Toxics, 11(3): 268.
  14. Goncharov, G., Soktoev, B., Farkhutdinov, I. and Matveenko, I. 2024. Heavy metals in urban soil: contamination levels, spatial distribution and human health risk assessment (the case of Ufa city, Russia). Environmental Research, 257 (15): 119216.
  15. Gopal, V., Krishnamurthy, R. R., Indhumathi, A., Sharon, B. T., Priya, T. D., Rathinavel, K., Manikanda Bharath, K.,  Magesh, N. S. and Ayyamperumal, R. 2024. Geochemical evaluation, ecological and human health risk assessment of potentially toxic elements in urban soil, southern India. Environmental Research, 248: 118413.
  16. Gujre, N., Mitra, S., Soni, A., Agnihotri, R., Rangan, L., Rene, E. R. and Sharma, M. P. 2021. Speciation, contamination, ecological and human health risks assessment of heavy metals in soils dumped with municipal solid wastes. Chemosphere, 262: 128013.
  17. Hakanson, L. 1980. An ecological risk index for aquatic pollution control. A sedimentological approach. Water Research, 14(8): 975-1001.
  18. Haghnazar, H., Hudson-Edwards, K. A., Kumar, V., Pourakbar, M., Mahdavianpour, M. and Aghayani, E. (2021). Potentially toxic elements contamination in surface sediment and indigenous aquatic macrophytes of the Bahmanshir River, Iran: Appraisal of phytoremediation capability. Chemosphere, 285: 131446.
  19. Hoshyari, E., Hassanzadeh, N., Keshavarzi, B., Jaafarzadeh, N. and Rezaei, M. 2023. Spatial distribution, source apportionment, and ecological risk assessment of elements (PTEs, REEs, and ENs) in the surface soil of Shiraz City (Iran) under different land-use types. Chemosphere, 311: 137045.
  20. Hosseini, N. S., Sobhanardakani, S., Cheraghi, M., Lorestani, B. and Merrikhpour, H. 2020. Heavy metal concentrations in roadside plants (Achillea wilhelmsii and Cardaria draba) and soils along some highways in Hamedan, west of Iran. Environmental Science and Pollution Research, 27: 13301-13314.
  21. Hosseini, N. S., Sobhanardakani, S., Cheraghi, M., Lorestani, B. and Merrikhpour, H. 2022. Expansive herbaceous species as bio-tools for elements detection in the vicinity of major roads of Hamedan, Iran. International Journal of Environmental Science and Technology, 19(3): 1611-1624.
  22. Hosseini, N.S. and Sobhanardakani, S. 2024. Concentration, sources, potential ecological and human health risks assessment of trace elements in roadside soil in Hamedan metropolitan, west of Iran. International Journal of Environmental Analytical Chemistry, 104(17): 5962–5985.
  23. Istanbullu, S. N., Sevik, H., Isinkaralar, K. and Isinkaralar, O. 2023. Spatial distribution of heavy metal contamination in road dust samples from an urban environment in Samsun, Türkiye. Bulletin of Environmental Contamination and Toxicology, 110(4): 78.
  24. Jahandari, A., Abbasnejad, A. and Jamasb, R. 2020. Concentration, likely sources, and ecological risk assessment of potentially toxic elements in urban soils of Shiraz City, SW Iran: a preliminary assessment. Arabian Journal of Geosciences, 13: 1-10.
  25. Jiang, Y., Chao, S., Liu, J., Yang, Y., Chen, Y., Zhang, A. and Cao, H. 2017. Source apportionment and health risk assessment of heavy metals in soil for a township in Jiangsu Province, China. Chemosphere, 168: 1658-1668.
  26. Kaghazchi, M. E. and Soleimani, M. 2023. Changes in ecological and health risk assessment indices of potentially toxic elements associated with ambient air particulate matters (PM5) in response to source, land use and temporal variation in Isfahan city, Iran. Urban Climate, 49: 101520.
  27. Konstantinova, E., Minkina, T., Nevidomskaya, D., Lychagin, M., Bezberdaya, L., Burachevskaya, M., Rajput, V.D., Zamulina, I., Bauer, T. and Mandzhieva, S. 2024. Potentially toxic elements in urban soils of the coastal city of the Sea of Azov: Levels, sources, pollution and risk assessment. Environmental Research, 252:
  28. Lee, J. I., Lee, C. H., Lee, C. G., Choi, N. C. and Park, S. J. 2025. Evaluating the potential of remediated dredged sediments as a growth medium for landscape plants: Effects of soil amendments and heavy metal uptake. International Journal of Sediment Research. https://doi.org/10.1016/j.ijsrc.2025.07.012.
  29. Li, Y., Xu, Z., Ren, H., Wang, D., Wang, J., Wu, Z. and Cai, P. 2022. Spatial distribution and source apportionment of heavy metals in the Topsoil of Weifang City, East China. Frontiers in Environmental Science, 10: 893938.
  30. Li, J., Liu, J. Z., Tai, X. S., Jiao, L., Zhang, M. and Zang, F. 2024. Pollution and source-specific risk analysis of potentially toxic metals in urban soils of an oasis-tourist city in northwest China. Environmental Geochemistry and Health, 46(2): 1-20.
  31. Liu, X., Chi, H., Tan, Z., Yang, X., Sun, Y., Li, Z., Hu, K., Hao, F., Liu, Y., Yang, S., Deng, Q. and Wen, X. 2023. Heavy metals distribution characteristics, source analysis, and risk evaluation of soils around mines, quarries, and other special areas in a region of northwestern Yunnan, China. Journal of Hazardous Materials, 458: 132050.
  32. Men, C., Liu, R., Wang, Q., Guo, L., Miao, Y. and Shen, Z. 2019. Uncertainty analysis in source apportionment of heavy metals in road dust based on positive matrix factorization model and geographic information system. Science of the Total Environment, 652: 27.
  33. Neina, D. 2019. The role of soil pH in plant nutrition and soil remediation. Applied and Environmental Soil Science, 2019(1):
  34. Oyebamiji, A. O., Olaolorun, O. A., Popoola, O. J. and Zafar, T. 2024. Assessment of heavy metal pollution in soils of Jebba Area, Nigeria: Concentrations, source analysis and implications for ecological and human health risks. Science of the Total Environment, 945: 173860.
  35. Pilková, Z., Filová, L., Hiller, E. and Mihaljevič, M. 2024. Re-Interpretation of metal (loid) concentrations in urban soils of two different land uses by positive matrix factorisation. Environmental Forensics, 25(6): 626–644.
  36. Roy, P. D., Sundar, S., Usha, T., Gowrappan, M., V, P. K., Periyasamy, R., Jonathan, M. P. and Chokkalingam, L. 2023. Pollution assessment with respect to five heavy metals in urban soils of the greater Chennai Region, southeast coast of India. Water, Air, & Soil Pollution, 234(2): 63.
  37. Sabet Aghlidi, P., Cheraghi, M., Lorestani, B., Sobhanardakani, S. and Merrikhpour, H. 2020. Analysis, spatial distribution and ecological risk assessment of arsenic and some heavy metals of agricultural soils, case study: South of Iran. Journal of Environmental Health Science and Engineering, 18(2): 665-676.
  38. Siddig, M. M., Asabere, S. B., Al-Farraj, A. S., Brevik, E. C. and Sauer, D. 2025. Pollution and ecological risk assessment of heavy metals in anthropogenically-affected soils of Sudan: A systematic review and meta-analysis. Journal of Hazardous Materials Advances, 17: 100601.
  39. Singh, M. P., Bhattacharyya, S., Chinu, K., Akter, R. and Marjo, C. E. 2025. Comprehensive chemical profiling of roadside soil and road dust of Delhi, India: Estimation of health risk and city fuel consumption. Journal of Hazardous Materials Advances, 18: 100668.
  40. Tomlinson, D. L., Wilson, J. G., Harris, C. R. and Jeffrey, D. W. 1980. Problems in the assessment of heavy-metal levels in estuaries and the formation of a pollution index. Helgoländer meeresuntersuchungen, 33: 566-575.
  41. Upadhyay, V., Kumari, A. and Kumar, S. 2024. From soil to health hazards: Heavy metals contamination in northern India and health risk assessment. Chemosphere, 354: 141697.
  42. Wang, S., Cai, L. M., Wen, H. H., Luo, J., Wang, Q. S. and Liu, X. 2019. Spatial distribution and source apportionment of heavy metals in soil from a typical county-level city of Guangdong Province, China. Science of the Total Environment, 655: 92-101.
  43. Wang, Z., Lu, X., Yu, B., Yang, Y., Wang, L. and Lei, K. 2023. Ascertaining priority control pollution sources and target pollutants in toxic metal risk management of a medium-sized industrial city. Science of the Total Environment, 887: 164022.
  44. Wang, P., Han, G., Hu, J., Zhang, Q., Tian, L., Wang, L., Liu, T., Ma, W., Li, J. and Zheng, H. 2024. Remarkable contamination characteristics, potential hazards and source apportionment of heavy metals in surface dust of kindergartens in a northern megacity of China. Journal of Hazardous Materials, 465: 133295.
  45. Yin, J., Wu, X., Li, S., Li, C. and Guo, Z. 2020. Impact of environmental factors on gastric cancer: a review of the scientific evidence, human prevention and adaptation. Journal of Environmental Sciences, 89: 65-79.