ارزیابی برخی ویژگی‌های خاک باغ‌های سیب با استفاده از رویکرد شاخص ارزش غذایی (NIV)

نوع مقاله : مقاله پژوهشی

نویسنده

دانشیار پژوهش، بخش تحقیقات خاک و آب، مرکز تحقیقات و آموزش کشاورزی و منابع طبیعی آذربایجان غربی، سازمان تحقیقات، آموزش و ترویج

چکیده

ارزیابی ویژگی‌های خاک باغ‌های سیب، برای درک سلامت خاک و پتانسیل تولیدی آن بسیار مهم است. این پژوهش به‌منظور ارزیابی برخی از ویژگی‌های فیزیکی، شیمیایی و حاصلخیزی خاک باغ‌های سیب استان آذربایجان غربی با استفاده از روش شاخص ارزش غذایی (NIV) انجام شد. نمونه‌ها از 148 نقطه مختلف، هر کدام از عمق 0-30 و 30-60 سانتی­متری یک باغ سیب جمع‌آوری شدند. نمونه‌ها از نظر توزیع اندازه ذرات، درصد اشباع (SP)، پ­هاش (pH)، هدایت الکتریکی (EC)، کربنات کلسیم معادل (CCE)، کربن آلی (OC)، فسفر قابل‌جذب (Pava) و پتاسیم قابل‌جذب (Kava) مورد تجزیه‌وتحلیل آماری قرار گرفتند. نتایج نشان داد که 75% خاک‌های مزبور در شرایط قلیایی متوسط ​​تا زیاد با مقدار کربنات کلسیم معادل متوسط ​​تا زیاد (5/89%) بودند. نیز، 75% نمونه‌ها از نظر کربن آلی خاک در محدوده تا 1/13-0/9% قرار داشتند. در50% خاک‌ها، فسفر قابل‌جذب کمتر از 2/6 میلی‌گرم بر کیلوگرم (کلاس پایین) و در 50% بقیه، فسفر در شرایط بهینه تا زیاد (بیش از 8/5 میلی‌گرم بر کیلوگرم) بود. در بیش از 25% از خاک‌ها محتوای پتاسیم قابل ‌جذب در حد پایین (144 میلی گرم بر کیلوگرم) بود و بیش از 75% از آن‌ها در کلاس متوسط ​​تا بالا قرار داشت. به‌طورکلی، 93/7%، 93%، 85/5%، 89/5%، 98/6%، 95/9% و 83/4% به ترتیب برای ویژگی‌های EC، pH، CCE، OC، Pava و Kava خاک در کلاس‌های بالای NIV قرار گرفتند؛ بنابراین، خاک‌های منطقه از ویژگی‌های نسبتاً مطلوبی برای رشد درختان سیب برخوردار بوده و با مدیریت صحیح باغ، تولید سیب باکیفیت مطلوبی قابل‌دستیابی است.

کلیدواژه‌ها

موضوعات


عنوان مقاله [English]

Assessment of some soil characteristics of apple orchards using nutrient index value approach

نویسنده [English]

  • Aziz Majidi
Associate Professor, Soil and Water Research Dept., West Azerbaijan Agricultural and Natural Resources Research and Education Center, Agricultural Research, Education and Extension Organization, Urmia, Iran.
چکیده [English]

Evaluating soil properties is crucial for understanding soil health and optimizing apple production. This study was carried out to evaluate some physical, chemical, and fertility properties using nutrient index value (NIV (approach of apple orchards in West Azerbaijan Province, Iran. Samples were collected from 148 sampling points, each from one apple orchard, at the depths of 0–30 and 30-60 cm. Samples were analyzed for particle size distribution, saturation percentage, pH, EC, equivalent CaCO3 (CCE(, organic carbon (OC(, available phosphorus (Pava) and potassium (Kava). Data generated from laboratory analysis were subjected to statistical analysis. Data interpretation was performed using the nutrient index value based on the common and Gomez classification methods. Results revealed that soils of the study area were medium to high alkaline (75%) with moderate to high calcium carbonate equivalent (89.5%). About 75% of samples were low (less than 0.9%) and medium (25%) in category of soil organic carbon (0.9-13.1%). Also, 50% of the soils had Pava less than 2.6 mg/kg (low class) and 50% had optimal to high Pava (more than 5.8 mg kg-1). In more than 25% of the soils, the Kava was low (144 mg/kg), and more than 75% were medium to high. The results indicated that 93.7%, 93%, 85.5%, 89.5%, 98.69%, 95.9%, and 83.4% of the study areas were in the high NIV classes for EC, pH, CCE, OC, Pava, and Kava, respectively. Similar results were obtained for all soil parameters, except for Pava in the common method. In the common method, 78% of the soils showed the low NIV class. Hence, it is concluded that the soils of the region have relatively favorable characteristics for the growth of apple trees, and in the conditions of proper orchard management, high-quality apple production is achievable.

کلیدواژه‌ها [English]

  • Calcareous soils
  • Soil fertility
  • Soil productivity potential
  1. سعیدی، م، رضایی، ع، کاظمی، م. ۱۳۹۷. بررسی رابطه بین بافت خاک و کربنات کلسیم معادل در خاک‌های آهکی منطقه خوزستان. مجله علوم خاک ایران، 11(4)، 59-70 https://doi.org/1001.1.2008479.1389.41.2.7.8.
  2. شهبازی، ک. 1403. روش های تجزیه خاک نمونه‌برداری، روش‌های شیمیایی و فیزیکی. چاپ اول، انتشارات موسسه تحقیقات خاک و آب، کرج، ایران. 1074 صفحه
  3. قائمیان، ن، حسنی، ق، طهماسبی، ک، نعمتی، ط، مسیح آبادی، م. ح. 1388. درجه‌بندی ویژگی‌های اراضی و نیازهای زویشی سیب جهت تهیه جداول پایه تناسب اراضی در استان آذربایجان‌غربی. گزارش نهائی، شماره 89/770، موسسه تحقیقات خاک و آب، تهران، ایران. 47 صفحه.
  4. محمدی، م، رضایی، ن. و حسینی، ر. 1395. تأثیر مواد آلی بر تثبیت پتاسیم در خاک‌های آهکی ایران. مجله علوم خاک ایران، دوره 23، 4، 521-530.
  5. مظفری، ع. ۱۳۹۳. شناخت و اصلاح خاک‌های آهکی. انتشارات دانشگاه تهران، تهران، ایران.
  6. نقیبی، ح. ۱۳۹۵. تأثیر شرایط اقلیمی بر تشکیل کربنات کلسیم در خاک‌های مناطق خشک ایران. پژوهش‌های خاک و آب ایران، 20(3)، 33-45.
  7. Adak, T. and Pandey, G., 2020. Estimating soil nutrient index vis− à− vis mango orchard productivity of Lucknow region, Uttar Pradesh, India. Tropical Plant Research, 7(3), pp.622-626. DOI:22271/tpr.2020.v7.i3.077
  8. Adak, T., Pandey, G., Singh, V.K. and Rajan, S., 2019. Assessing soil nutrient index in mango orchards of Maal area, Lucknow, UP. Journal of Soil and Water Conservation, 18(3), pp.263-267. DOI:5958/2455-7145.2019.00037.7
  9. Ahemad, M., and Khan, M. S., 2011. Assessment of plant growth promoting activities of phosphate solubilizing bacteria in calcareous soils. Environmental Monitoring and Assessment, 174(1), 533–546. https://doi.org/10.1007/s10661-010-1471-3
  10. Arunrat, N., Kongsurakan, P., Sereenonchai, S. and Hatano, R., 2020. Soil organic carbon in sandy paddy fields of Northeast Thailand: A review. Agronomy, 10(8), p.1061. DOI:3390/agronomy10081061
  11. Brady, N.C., 1984. The nature and properties of soils. 15th Edition. Pearson Education.
  12. Bohn, H.L., McNeal, B.L. and O’Connor, G.A., 2001. Soil Chemistry 3rd Edition. Canada: John & Wiley Sons. Inc. http://dx. doi. org/10.1002/jpln. 19861490315.
  13. Stevenson, F.J., 1994. Humus chemistry: genesis, composition, reactions. John Wiley & Sons.
  14. Bertrand, I.H.R.A., Holloway, R.E., Armstrong, R.D. and McLaughlin, M.J., 2003. Chemical characteristics of phosphorus in alkaline soils from southern Australia. Soil Research, 41(1), pp.61-76. https://doi.org/10.1071/SR02021(csiro.au)
  15. Bolan, N., Srivastava, P., Rao, C.S., Satyanaraya, P.V., Anderson, G.C., Bolan, S., Nortjé, G.P., Kronenberg, R., Bardhan, S., Abbott, L.K. and Zhao, H., 2023. Distribution, characteristics and management of calcareous soils. Advances in agronomy, 182, pp.81-130. DOI: 1016/bs.agron.2023.06.002
  16. Durkhshan, S., 2022. Nutrient Indexing of High Density Apple Orchards of SKUAST-K, Shalimar (Doctoral dissertation, SKUAST Kashmir).
  17. Gentile, R.M., Boldingh, H.L., Campbell, R.E., Gee, M., Gould, N., Lo, P., McNally, S., Park, K.C., Richardson, A.C., Stringer, L.D. and Vereijssen, J., 2022. System nutrient dynamics in orchards: a research roadmap for nutrient management in apple and kiwifruit. A review. Agronomy for Sustainable Development, 42(4), p.64. DOI:1007/s13593-022-00798-0
  18. Gomez, K.A. and Gomez, A.A., 1984. Statistical procedures for agricultural research. John wiley & sons.
  19. Hinsinger, P., 2001. Bioavailability of soil inorganic P in the rhizosphere as affected by root-induced chemical changes: a review. Plant and soil, 237(2), pp.173-195. DOI:1023/A:1013351617532
  20. Khosravi, V., Gholizadeh, A., Žížala, D., Kodešová, R., Saberioon, M., Agyeman, P.C., Vokurková, P., Juřicová, A., Spasić, M. and Borůvka, L., 2024. On the impact of soil texture on local scale organic carbon quantification: From airborne to spaceborne sensing domains. Soil and Tillage Research, 241, p.106125. DOI:1016/j.still.2024.106125
  21. Leytem, A.B. and Mikkelsen, R.L., 2005. The nature of phosphorus in calcareous soils. Better Crops, 89(2), pp.11-13.
  22. Marschner, H., 2012. Marschner's mineral nutrition of higher plants. Academic press.
  23. Küçükdönmezer, B., Şeker, C. and Negiş, H., 2025. Influence of Soil Quality on Apple Yield: Evaluating Physical, Chemical, and Biological Indicators in Semi-dwarf Orchards. Applied Fruit Science, 67(3), pp.1-14. DOI:1007/s10341-025-01410-x
  24. Masrat, M., 2019. Characterization, Classification and Nutrient Indexing of High Density Apple Orchard Soils of North Kashmir (Doctoral dissertation, SKUAST Kashmir).
  25. Men, X., Fan, Z., Wang, Y., Wang, Y., Wang, Y. and Han, Z., 2023, March. Evaluation of fertilizer inputs and soil nutrient status in apple orchards in China. In Journal of Physics: Conference Series (Vol. 2463, No. 1, p. 012069). IOP Publishing. DOI:1088/1742-6596/2463/1/012069
  26. Moore, A., Hines, S., Brown, B., Falen, C., de Haro Marti, M., Chahine, M., Norell, R., Ippolito, J., Parkinson, S. and Satterwhite, M., 2014. Soil–Plant Nutrient Interactions on Manure‐Enriched Calcareous Soils. Agronomy Journal, 106(1), pp.73-80. DOI:2134/agronj2013.0345
  27. Ortiz, C., Pierotti, S., Molina, M.G. and Bosch-Serra, À.D., 2023. Soil fertility and phosphorus leaching in irrigated calcareous soils of the Mediterranean region. Environmental Monitoring and Assessment, 195(11), p.1376. DOI:1007/s10661-023-11901-7
  28. Nelson, D.W., Sommers, L.E., Page, A.L., Miller, R.H. and Keeney, D.R., 1982. Methods of soil analysis. Part 2. Chemical and microbiological properties. Agronomy monograph, 9, pp.539-579.
  29. Parker, F.W., Nelson, W.L. and Winters, E., 1951. The broad interpretation and application of soil test information. Agronomy Journal, 43, pp.105-112.
  30. Quesada, C.A., Paz, C., Oblitas Mendoza, E., Phillips, O.L., Saiz, G. and Lloyd, J., 2020. Variations in soil chemical and physical properties explain basin-wide Amazon forest soil carbon concentrations. Soil, 6(1), pp.53-88. DOI:5194/soil-2019-24
  31. Ramírez, P.B., Machado, S., Singh, S., Plunkett, R. and Calderón, F.J., 2023. Addressing the effects of soil organic carbon on water retention in US Pacific Northwest wheat–soil systems. Frontiers in Soil Science, 3, p.1233886. DOI:3389/fsoil.2023.1233886
  32. Razeghi, H.R., Safaee, F., Geranghadr, A., Ghadir, P. and Javadi, A.A., 2024. Investigating accelerated carbonation for alkali activated slag stabilized sandy soil. Geotechnical and Geological Engineering, 42(1), pp.575-592. DOI:1007/s10706-023-02590-7
  33. Sharma, M.P., & Shukla, A.K., 1997. Soil Chemistry. Rastogi Publications.
  34. Sharpley, A.N. 1996. Availability of phosphorus to plants in relation to soil factors and P removal processes. Plant and Soil, 198, pp. 71–77.
  35. Sparks, D.L., 2003. Environmental soil chemistry: An overview. Environmental soil chemistry, 2, pp.1-42.
  36. Von Wandruszka, R., 2006. Phosphorus retention in calcareous soils and the effect of organic matter on its mobility. Geochemical transactions, 7, pp.1-8. https://doi.org/10.1186/1467-4866-7-6
  37. Stewart, C.E., Paustian, K., Conant, R.T., Plante, A.F. and Six, J., 2007. Soil carbon saturation: concept, evidence and evaluation. Biogeochemistry, 86, pp.19-31. DOI:2136/sssaj2007.0104
  38. Usowicz, B. and Lipiec, J., 2021. Spatial variability of saturated hydraulic conductivity and its links with other soil properties at the regional scale. Scientific Reports, 11(1), p.8293. https://doi.org/10.1038/s41598-021-86862-3
  39. Yang, M., Wang, S., Zhao, X., Gao, X. and Liu, S., 2020. Soil properties of apple orchards on China's Loess Plateau. Science of the Total Environment, 723, p.138041. DOI:1016/j.scitotenv.2020.138041
  40. Zhang, W., Lu, J.S., Bai, J., Khan, A., Zhao, L., Wang, W., Zhu, S.G., Liu, S.T., Jin, J.M., Nyanchera, G.D. and Li, S.Q., 2024. Reduced fertilization boosts soil quality and economic benefits in semiarid apple orchard: A two-year appraisal of fertigation strategy. Agricultural Water Management, 295, p.108766. DOI: 1016/j.agwat.2024.108766
  41. Zhang, S., Wang, L., Chen, S., Fan, B., Huang, S. and Chen, Q., 2022. Enhanced phosphorus mobility in a calcareous soil with organic amendments additions: Insights from a long term study with equal phosphorus input. Journal of Environmental Management, 306, p.114451. https://doi.org/10.1016/j.jenvman.2022.114451
  42. Zhang, M., Li, C., Li, Y. C., & Harris, W. G., 2014. Phosphate minerals and solubility in native and agricultural calcareous soils. Geoderma. 232, pp. 164-171. DOI:1016/j.geoderma.2014.05.015
  43. Zaheri Abdehvand, Z., Karimi, D., Rangzan, K. and Mousavi, S.R., 2024. Assessment of soil fertility and nutrient management strategies in calcareous soils of Khuzestan province: A case study using the Nutrient Index Value method. Environmental Monitoring and Assessment, 196(6), p.503. DOI:1007/s10661-024-12665-4
  44. Zhou, M. and Li, Y., 2001. Phosphorus‐sorption characteristics of calcareous soils and limestone from the southern Everglades and adjacent farmlands. Soil Science Society of America Journal, 65(5), pp.1404-1412. DOI:2136/sssaj2009.0137
  45. Wang, X.Q., Zhang, X.C., Pei, X.J. and Ren, G.F., 2022. Effect of the particle size composition and dry density on the water retention characteristics of remolded loess. Minerals, 12(6), p.698. DOI:3390/min12060698
  46. Wang, J., & Li, X. (2023). Comprehensive analysis of soil physicochemical properties and nutrient status in apple orchards. Agronomy, 15(14), 1520. DOI:3390/horticulturae9080903
  47. Wang, Z., Liu, R., Fu, L., Tao, S. and Bao, J., 2023. Effects of orchard grass on soil fertility and nutritional status of fruit trees in Korla fragrant pear orchard. Horticulturae, 9(8), p.903. DOI:3390/horticulturae9080903
  48. Wang, S., Xu, L. and Hao, M., 2022. Impacts of long-term micronutrient fertilizer application on soil properties and micronutrient availability. International Journal of Environmental Research and Public Health, 19(23), p.16358. DOI: 3390/ijerph192316358. PMID: 36498430; PMCID: PMC9736148.