پویایی و توزیع شکل‌های مختلف فسفر و پتاسیم در خاک اطراف ریشه ذرت و سیب‌زمینی در اثر کودآبیاری با سیستم آبیاری قطره‌ای

نوع مقاله : مقاله پژوهشی

نویسندگان

موسسه تحقیقات خاک و آب کشور، سازمان تحقیقات، آموزش و ترویج کشاورزی، کرج، ایران

چکیده

پویایی، انتقال و توزیع عناصر غذایی در اغلب خاک‌ها غیر یکنواخت بوده و این غیر یکنواختی در سیستم آبیاری قطره­ای نمود بیشتری می­یابد. مطالعه حاضر با هدف بررسی پویایی فسفر و پتاسیم در کشت سیب­زمینی و ذرت تحت سیستم آبیاری قطره­ای در مزرعه اجرا گردید. سیب­زمینی به صورت جوی و پشته و ذرت به­صورت نواری کشت شد. برنامه آبیاری به­صورت 2 بار در هفته و هر بار 4 ساعت معادل 4 لیتر بر هر متر طول تیپ بود. مقدار کود موردنیاز بر اساس آزمون خاک در دو نوبت تقسیط شد و از طریق کود آبیاری (یک ساعت پس از شروع آبیاری، به مدت سه ساعت) اعمال شد. پس از کودآبیاری اول، نمونه­برداری خاک در فواصل زمانی 4، 24، 98 و 624 و 1632 ساعت و کودآبیاری دوم در فواصل زمانی 4، 24، 98 و 960 ساعت با فواصل افقی0، 5، 10 و 15 سانتی­متر و فواصل عمقی 0-5، 5-10، 10-15، 15-20، 25-30 و 30- 40 سانتی‌متر (روش آگر) از قطره چکان با دو تکرار (در 2 بوته گیاه) انجام شد. رطوبت خاک با استفاده از دستگاه TDR در اعماق ۱۰ تا ۵۰ سانتی­متر و در دو نوبت روزانه اندازه­گیری شد. داده­های حاصل با استفاده از روش­های درون­یابی و تحلیل مکانی-زمانی مورد پردازش قرار گرفتند. نتایج حاکی از الگوی کاملاً متمایز توزیع عناصر پرتحرک پتاسیم و کم­تحرک فسفر بود. به­طوریکه بیشترین تجمع این عناصر در محدوده ۰–۱۵ سانتی­متر عمودی و ۰–۳۵ سانتی­متر افقی از قطره­چکان مشاهده شد. همچنین همبستگی معناداری بین الگوی پیشروی جبهه رطوبتی و توزیع عناصر غذایی مشاهده شد. نتایج نشان داد در گیاهان با سیستم ریشه­زایی سطحی (مانند سیب­زمینی)، کاربرد تقسیطی کود با دوز کمتر نسبت به کاربرد یکباره کود برتری دارد. بنابراین، مدیریت تقسیط کود در سیستم آبیاری قطره­ای با توجه به الگوی توزیع رطوبت و ویژگی­های ریشه­زایی محصول، می­تواند به­طور مؤثری کارایی و فراهمی مصرف کود را افزایش داده و از تلفات عناصر غذایی جلوگیری کند.

کلیدواژه‌ها

موضوعات


عنوان مقاله [English]

Dynamics and Distribution of Different Forms of Phosphorus and Potassium in the Rhizosphere of Maize and Potato under Drip Fertigation

نویسندگان [English]

  • Meisam Rezaei
  • Mostafa Marzi
  • Kambiz Bazargan
  • Karim Shahbazi
  • Meysam Cheraghi
Soil and Water Research Institute, Agricultural Research, Education and Extension Organization, Karaj, Iran
چکیده [English]

Introduction: Agricultural systems in arid and semi-arid regions face significant challenges, including water scarcity, climate change, and inefficient resource management. Drip fertigation, which delivers water and fertilizers directly to the root zone, enhances resource use efficiency by synchronizing nutrient supply with crop demand. Understanding the dynamics of essential nutrients like phosphorus (P) and potassium (K) under this system is vital, as their behavior differs significantly. Phosphorus is relatively immobile in soil due to strong adsorption and precipitation reactions, particularly in calcareous soils. In contrast, potassium exhibits greater mobility, moving via both diffusion and mass flow. The distribution of these nutrients is influenced by the soil's wetting pattern, soil properties, irrigation regime, and crop root architecture.This field study investigates the spatiotemporal dynamics of P and K for two crops with contrasting root systems—maize and potato—under drip fertigation.
Objectives: This study aimed to: 1) Evaluate the horizontal and vertical distribution of soluble and available forms of P and K in the soil profile around maize and potato roots; 2) Compare the nutrient depletion profiles in the rhizosphere of both crops; and 3) Investigate the transformation of applied P and K into less mobile forms over time.

Materials and Methods: The research was carried out at the Soil and Water Research Institute in Karaj, Iran. The soil texture was clay loam with a calcareous nature (0.6% organic carbon, 9.4% calcium carbonate equivalent). Potato (Agria cultivar) was cultivated in a ridge-and-furrow system, while maize (Single Cross 704 hybrid) was planted in a strip pattern. The field was equipped with a surface drip irrigation system. Irrigation was applied twice weekly for 4 hours per session, delivering 4 liters per meter of drip tape. The fertilizer requirement (e.g., NPK), determined based on soil test results, was applied in two split doses. Fertigation commenced one hour after the start of irrigation and continued for three hours. Soil moisture was monitored twice daily using TDR sensors installed at various depths (10-50 cm). Following the first and second fertigation events, intensive soil sampling was performed at specific time intervals (4, 24, 98, 624, 1632 hours after each). Samples were taken at horizontal distances of 0, 5, 10, and 15 cm from the emitter and at vertical depth intervals of 0-5, 5-10, 10-15, 15-20, 25-30, and 30-40 cm using an auger, with two replicates per treatment (including a non-cropped control plot). The collected soil samples were analyzed and visualized for soluble P, available P (Olsen method), soluble K, exchangeable K, and non-exchangeable K.

Results: The results revealed distinctly different distribution patterns for potassium and phosphorus. The maximum accumulation for both elements was confined to a zone within 0-15 cm vertically and 0-35 cm horizontally from the drip emitter, closely following the advance of the soil wetting front. Phosphorus movement was limited. Maximum vertical and horizontal movement reached only 13 cm and 20 cm, respectively. Soluble P concentrations spiked shortly after fertigation and returned to baseline within five days. Available P showed greater horizontal dispersion than soluble P. Crop-specific differences were evident; maize restricted vertical P movement, while potato promoted lateral dispersion, reflecting their distinct root architectures and water uptake patterns. Potassium was significantly more mobile, moving up to 20 cm vertically and over 35 cm horizontally. The distributions of soluble and exchangeable K were highly correlated and dependent on moisture flow. Rapid K movement occurred initially when soil moisture was high. Crucially, K concentrations in the root zone of cropped plots were substantially lower than in the non-cropped control, demonstrating significant plant uptake.

Conclusion: This study demonstrates that the dynamics and distribution of phosphorus and potassium under drip fertigation are strongly influenced by soil properties, soil moisture, the specific crop and its root system. The practice of split fertigation with lower concentrations per application is highly recommended, particularly for crops with shallow root systems, as it synchronizes nutrient supply with root activity, thereby improving fertilizer use efficiency and mitigating environmental risks. The successful application of geostatistical interpolation to visualize these complex patterns underscores the potential of integrating simulation models like HYDRUS for optimizing fertigation management strategies, reducing the need for costly and time-intensive field trials. This research provides practical insights for enhancing nutrient management in drip-irrigated maize and potato systems in arid and semi-arid regions.

کلیدواژه‌ها [English]

  • Soil moisture
  • Fertigation
  • Simulation
  • Solute transport and movement
  • Drip irrigation
  • Model
  1. Allen, R.G., Pereira, L.S., Raes, D., Smith, M., 1998. Crop evapotranspiration-Guidelines for computing crop water requirements-FAO Irrigation and drainage paper 56. Fao, Rome 300, D05109.
  2. Barber, S.A., 1995. Soil nutrient bioavailability: a mechanistic approach. John Wiley & Sons.
  3. Bouyoucos, G.J., 1962. Hydrometer method improved for making particle size analyses of soils 1. Agronomy journal 54, 464-465. https://doi.org/10.2134/agronj1962.00021962005400050028x
  4. Chtouki, M., Naciri, R., Oukarroum, A., 2024. A review on phosphorus drip fertigation in the Mediterranean region: Fundamentals, current situation, challenges, and perspectives. Heliyon 10, e25543. https://doi.org/10.1016/j.heliyon.2024.e25543
  5. Coelho, E.F., Or, D., 1999. Root distribution and water uptake patterns of corn under surface and subsurface drip irrigation. Plant and Soil 206, 123-136. https://doi.org/10.1023/A:1004325219804
  6. Corwin, D.L., 2021. Climate change impacts on soil salinity in agricultural areas. European Journal of Soil Science 72, 842-862. https://doi.org/10.1111/ejss.13010
  7. Ebrahimian, H., Liaghat, A., Parsinejad, M., Playán, E., 2012. Distribution and loss of water and nitrate under alternate and conventional furrow fertigation. Spanish Journal of Agricultural Research 10, 849-863. https://doi.org/10.5424/sjar/2012103-585-11
  8. Gärdenäs, A.I., Hopmans, J.W., Hanson, B.R., Šimůnek, J., 2005. Two-dimensional modeling of nitrate leaching for various fertigation scenarios under micro-irrigation. Agricultural Water Management 74, 219-242. https://doi.org/10.1016/j.agwat.2004.11.011
  9. Gheysari, M., Pirnajmedin, F., Movahedrad, H., Majidi, M.M., Zareian, M.J., 2021. Crop yield and irrigation water productivity of silage maize under two water stress strategies in semi-arid environment: Two different pot and field experiments. Agricultural Water Management 255, 106999. https://doi.org/10.1016/j.agwat.2021.106999
  10. Grecco, K.L., de Miranda, J.H., Silveira, L.K., van Genuchten, M.T., 2019. HYDRUS-2D simulations of water and potassium movement in drip irrigated tropical soil container cultivated with sugarcane. Agricultural Water Management 221, 334-347. https://doi.org/10.1016/j.agwat.2019.05.010
  11. Guido, V., Finzi, A., Ferrari, O., Riva, E., Quílez, D., Herrero, E., Provolo, G., 2020. Fertigation of Maize with Digestate Using Drip Irrigation and Pivot Systems. Agronomy 10, 1453. https://doi.org/10.3390/agronomy10101453
  12. Hafeez, A., Ali, S., Ma, X., Tung, S.A., Shah, A.N., Ahmad, S., Chattha, M.S., Souliyanonh, B., Zhang, Z., Yang, G., 2019. Photosynthetic characteristics of boll subtending leaves are substantially influenced by applied K to N ratio under the new planting model for cotton in the Yangtze River Valley. Field Crops Research 237, 43-52. https://doi.org/10.1016/j.fcr.2019.04.015
  13. Hanson, B.R., Šimůnek, J., Hopmans, J.W., 2006. Evaluation of urea–ammonium–nitrate fertigation with drip irrigation using numerical modeling. Agricultural Water Management 86, 102-113. https://doi.org/10.1016/j.agwat.2006.06.013
  14. Havlin, J.L., 2014. Soil fertility and nutrient management. Upper Saddle River, NJ, USA, 460-469.
  15. Jalali, M., Rowell, D., 2009. Potassium leaching in undisturbed soil cores following surface applications of gypsum. Environmental Geology 57, 41-48. https://doi.org/10.1007/s00254-008-1280-6
  16. Khavazi, K., Balali, M., Bazargan, K., Tehrani, M., Rezaei, H., Asadi Rahmani, H., Gheibi, M., Davoodi, M., Saadat, S., Moshiri, F., 2014. Comprehensive soil fertility and plant nutrition program 2014-2025. Soil and Water Research Institute Press, Karaj, Iran.
  17. Kuldeep, Singh, A.K., Sajwan, A., Kamboj, A.D., Joshi, G., Gautam, R., Kumar, M., Mani, G., Lal, S., Kaur, J., 2024. Advances in precision nutrient management of fruit crops. Journal of Plant Nutrition 47, 3251-3271.
  18. Li, W., Gu, X., Du, Y., Zheng, X., Lu, S., Cheng, Z., Cai, W., Chang, T., 2023. Optimizing nitrogen, phosphorus, and potassium fertilization regimes to improve maize productivity under double ridge-furrow planting with full film mulching. Agricultural Water Management 287, 108439. https://doi.org/10.1080/01904167.2024.2377411
  19. Mohamadzade, F., Gheysari, M., Eshghizadeh, H., Tabatabaei, M.S., Hoogenboom, G., 2022. The effect of water and nitrogen on drip tape irrigated silage maize grown under arid conditions: Experimental and simulations. Agricultural Water Management 271, 107821. https://doi.org/10.1016/j.agwat.2022.107821
  20. Nie, W.-B., Nie, K.-K., Li, Y.-B., Ma, X.-Y., 2021. HYDRUS-2D Simulations of nitrate nitrogen and potassium transport characteristics under fertilizer solution infiltration of furrow irrigation. Water Supply 21, 2665-2680. https://doi.org/10.2166/ws.2020.266
  21. Page, A., 1965. Methods of soil analysis. Part 2. Chemical and microbiological properties. American Society of Agronomy, Soil Science Society of America.
  22. Phogat, V., Pitt, T., Petrie, P., Šimůnek, J., Cutting, M., 2023. Optimization of irrigation of wine grapes with brackish water for managing soil salinization. Land 12, 1947. https://doi.org/10.3390/land12101947
  23. Phogat, V., Skewes, M.A., Cox, J.W., Sanderson, G., Alam, J., Šimůnek, J., 2014. Seasonal simulation of water, salinity and nitrate dynamics under drip irrigated mandarin (Citrus reticulata) and assessing management options for drainage and nitrate leaching. Journal of Hydrology 513, 504-516. https://doi.org/10.1016/j.jhydrol.2014.04.008
  24. Raij, I., Šimůnek, J., Ben‐Gal, A., Lazarovitch, N., 2016. Water flow and multicomponent solute transport in drip‐irrigated lysimeters. Water Resources Research 52, 6557-6574. https://doi.org/10.1016/j.jhydrol.2011.07.016
  25. Rezaei, M., 2016. Characterization and modeling of water flow in sandy soils for irrigation optimization. Ghent University, Faculty of Bioscience Engineering, . Ghent, Ghent, Belgium.
  26. Rezaei, M., Movahedi Naeini, S.A.R., 2009a. Effects of ammonium and natural zeolite on potassium adsorption and desorption kinetics in a loess soil. International Journal of Soil Science. International Journal of Soil Science 4, 27-45. DOI:3923/ijss.2009.27.45
  27. Rezaei, M., Movahedi Naeini, S.A.R., 2009b. Kinetics of potassium desorption from a loess soil, soil mixed with zeolite, and the Clinoptilolite Zeolite as influenced by calcium and ammonium. Journal of Applied Science 9, 3335-3342. DOI:3923/jas.2009.3335.3342
  28. Rezaei, M., Seuntjens, P., Joris, I., Wesley Boënne, W., Van Hoey, S., Campling, P., Cornelis, W., 2016. Sensitivity of water stress in a two-layered sandy grassland soil to variations in groundwater depth and soil hydraulic parameters. Hydrology and Earth System Sciences 20, 487-503. https://doi.org/10.5194/hess-20-487-2016, 2016.
  29. Selim, T., Bouksila, F., Hamed, Y., Berndtsson, R., Bahri, A., Persson, M., 2018. Field experiment and numerical simulation of point source irrigation with multiple tracers. PloS one 13, e0190500. https://doi.org/10.1371/journal.pone.0190500
  30. Shahbazi, K., Mostafa Marzi, Mohammadi, M.H., Asadi, H., Fathi Gerdlidani, A., Hasheminasab, K.S., Toluee, R., Behesti, M., Avizhgan, A., Cheraghi, M., 2024. Methods of Soil Analysis; Sampling, Chemical and Physical Methods. Soil and Water Research Institute 1, 1074.
  31. Šimůnek, J., Brunetti, G., Jacques, D., van Genuchten, M.T., Šejna, M., 2024. Developments and applications of the HYDRUS computer software packages since 2016. Vadose Zone Journal 23, e20310. https://doi.org/10.1002/vzj2.20310
  32. Singh, D., Rajput, T., Sikarwar, H., Sahoo, R., Ahmad, T., 2006. Simulation of soil wetting pattern with subsurface drip irrigation from line source. Agricultural water management 83, 130-134. https://doi.org/10.1016/j.agwat.2005.11.002
  33. Surendran, U., Madhava Chandran, K., 2022. Development and evaluation of drip irrigation and fertigation scheduling to improve water productivity and sustainable crop production using HYDRUS. Agricultural Water Management 269, 107668. https://doi.org/10.1016/j.agwat.2022.107668
  34. Tehrani, M., Moshiri, F., Gheibi, M., Rezaei, H., Keshavarz, P., Davoodi, M., Ziaeian, A., Noorgholipour, F., Majidi, A., Hosseini, S., 2015. Comprehensive Soil Fertility and Plant Nutrition Program 2014-025. Agricultural Research, Education and Extension Organization. Soil and Water Research Institute 2.
  35. Visconti, F., de Paz, J.M., 2012. Prediction of the soil saturated paste extract salinity from extractable ions, cation exchange capacity, and anion exclusion. Soil Research 50, 536-550. https://www.thefreelibrary.com/Prediction+of+the+soil+saturated+paste+extract+salinity+from...-a0312725419
  36. Walkley, A., Black, I.A., 1934. An examination of the Degtjareff method for determining soil organic matter, and a proposed modification of the chromic acid titration method. Soil science 37, 29-38. http://dx.doi.org/10.1097/00010694-193401000-00003
  37. Zhang, J.-j., Li, J.-s., Zhao, B.-q., Li, Y.-t., 2015. Simulation of water and nitrogen dynamics as affected by drip fertigation strategies. Journal of Integrative Agriculture 14, 2434-2445. https://doi.org/10.1016/S2095-3119(15)61231-X
  38. Zhang, S., Wang, L., Chen, S., Fan, B., Huang, S., Chen, Q., 2022. Enhanced phosphorus mobility in a calcareous soil with organic amendments additions: Insights from a long term study with equal phosphorus input. Journal of Environmental Management 306, 114451. https://doi.org/10.1016/j.jenvman.2022.114451
  39. Zhang, Y., Wu, P., Zhao, X., Li, P., 2012. Evaluation and modelling of furrow infiltration for uncropped ridge–furrow tillage in Loess Plateau soils. Soil Research 50, 360-370. https://www.thefreelibrary.com/Evaluation+and+modelling+of+furrow+infiltration+for+uncropped...-a0303450484