پاسخ‌های تغذیه‌ای و فیزیولوژیکی نارنگی انشو میاگاوا (Citrus unshiu cv. Miyagawa) با پایه نارنج (Citrus aurantium L.) به خاک‌های آهکی در استان مازندران

نوع مقاله : مقاله پژوهشی

نویسندگان

1 عضو هیات علمی مرکز تحقیقات مازندران

2 عضو هیات علمی مرکز تحقیقات

10.22092/ijsr.2025.370719.788

چکیده

پژوهش حاضر با هدف ارزیابی پاسخ پایه نارنج (C. aurantium L.) به برخی خاک‌های آهکی شرق مازندران انجام شد. بدین منظور، آزمایشی به مدت دو سال درقالب طرح بلوک‌های کامل تصادفی در هفت خاک با بافت متفاوت (از لوم شنی تا رسی) و دامنه کربنات کلسیم از 2 تا 45 درصد انجام شد. پاسخ‌های گیاهی شامل وزن خشک، شاخص‌ درجه زردی، کلروفیل، شاخص فلورسنس کلروفیل، غلظت عناصر غذایی برگ و ریشه، مورد بررسی قرار گرفت. نتایج نشان داد که بیشترین و کمترین میانگین وزن خشک اندام هوایی به­ترتیب در خاک­های با بافت رسی و لوم شنی مشاهده شد. نهال­ها در خاک­های مختلف، علائم زردبرگی نداشتند. میانگین غلظت آهن، منگنز و روی در ریشه‌ها به­ترتیب 12/48، 6/14 و 3/19 برابر میانگین غلظت آن­ها در برگ‌ بود. به­طور کلی، از بین عناصر پرمصرف، منیزیم و گوگرد به­ترتیب بیشترین و کمترین راندمان انتقال از ریشه به اندام هوایی را داشتند. از بین عناصر کم­مصرف نیز آهن فعال و آهن کل به­ترتیب بیشترین و کمترین راندمان انتقال را نشان دادند. شاخص زرد برگی نهال­های انشو با پایه نارنج در خاک­های با آهک کم و زیاد، تفاوت معنی­داری نداشت. براساس نتایج این پژوهش، نارنج متحمل به آهک خاک است و آهک برای آن یک عامل محدود کننده نیست. در مقابل، بافت خاک (به‌ویژه بافت‌های سبک مانند لوم شنی) یکی از عوامل محدود کننده برای این پایه است.

کلیدواژه‌ها

موضوعات


عنوان مقاله [English]

Physiological and Nutritional Responses of Citrus unshiu cv. Miyagawa on Sour Orange (Citrus aurantium L.) in Mazandran Calcareous Soils of Mazandaran province

نویسندگان [English]

  • ali asadi kangarshahi 1
  • Negin Akhlaghi Amiri 2
1 Associate Professor of Soil and Water Research Department, Mazandaran Agricultural and Natural Resources Research and Education Center, AREEO, Sari,
2 Agronomy and Horticultural Science Department, Mazandaran
چکیده [English]

Background and Objectives: Some of the physical and chemical characteristics of the soils of Mazandaran Province, especially clay content from north to south and lime (calcium carbonate) content from west to east, exhibit the greatest variation (clay: 3–40% and lime: 0–45%). Based on research and field results, Swingle citrumelo (Grapefruit and Trifoliate orange) is recommended for low-lime soils; C-35 (Ruby Blood orange and P. trifoliata), Carrizo citrange (Citrus sinensis Osb. and Poncirus trifoliata L. Raf.), and Troyer citrange (C. sinensis and P. trifoliata L.) are suitable for low- to medium-lime soils with light texture. Gou Tou (Citrus aurantium L. var. Gou Tou) has relative tolerance to lime but shows chlorosis symptoms in high and very high-lime soils. Smooth Flat Seville (Citrus spp., hybrid of uncertain origin) is tolerant to soil lime but shows early deterioration in some soils. Therefore, for medium-, high-, and very high-lime soils of eastern Mazandaran, Sour Orange (C. aurantium L.) rootstock is the only desirable and available option for orchards, making it necessary to understand its response to the region's soils for field guidance and management. Establishing and re-establishing citrus orchards in the region's soils requires this knowledge. For this purpose, this study was conducted for the first time in the country to evaluate the nutritional and physiological responses of Citrus unshiu cv. Miyagawa on Sour Orange rootstock in calcareous soils of eastern Mazandaran.




Methodology: According to the soil map and soil reports, seven soil samples were selected with different textures (sandy loam to clay) and calcium carbonate (2–45%). Thirty kilograms of soil from the selected soil samples were poured into plastic pots. Then, Citrus unshiu cv. Miyagawa seedlings on Sour Orange rootstock were planted in each soil. The experiment was conducted for two years in pots in a randomized complete block design with seven soils in four replications, totaling 28 pots. Plant responses included dry weight, chlorosis rate, fluorescence index (Fv/Fm), chlorophyll, and nutrient concentrations in leaves and roots. Finally, all the obtained data were analyzed using SPSS software, and the means of the studied parameters were compared using Duncan’s multiple range test.
 




Results: The results of this study showed that the physical and chemical properties of the soil have a great influence on the nutritional and physiological responses of Citrus unshiu cv. Miyagawa on Sour Orange rootstock. The results showed that the highest and lowest average dry weight of aerial parts and roots were obtained from soils with clay texture and total lime of 30% and sandy loam soils with lime of 40%, respectively. There was a significant difference in the chlorosis rate of the leaves of seedlings on this rootstock in different soils. The average concentrations of Fe, Mn, and Zn in the roots were 12.48, 6.14, and 3.19 times, respectively, higher than the average concentrations in the leaves. In general, among the essential elements, Mg and S had the highest and lowest translocation factors (TFs) from the root to the leaves, respectively, while active and total Fe showed the highest and lowest TFs, respectively. The P, S, Fe, Mn, Zn, and Cu translocation factors were less than one, indicating that these elements are less mobile and accumulate in the roots. The leaf chlorosis index of Citrus unshiu cv. Miyagawa on Sour Orange rootstock in soils with low and high lime did not differ significantly. Additionally, increasing active lime did not have a significant effect on the concentration of active Fe or the chlorosis rate of seedlings on this rootstock.




Conclusion: According to the results of this study, Sour Orange rootstock is tolerant to soil lime, and lime is not a limiting factor for it. Therefore, it is recommended for calcareous soils of the eastern Mazandaran region, especially in soils with heavy texture and high lime content. However, its use in light-textured soils and in soils susceptible to manganese deficiency (where there is a possibility of manganese deficiency symptoms) is not recommended, because the results of this study showed that in these soils, its vegetative growth is severely reduced, and soil texture (especially light textures such as sandy loam) is one of the limiting factors for this rootstock.

کلیدواژه‌ها [English]

  • Calcium carbonate
  • citrus
  • leaf yellowing (chlorosis)
  • nutrients
  • rootstock
  1. Abadia, J. and Abadia, A. 1993. Iron and plant pigments. In: Barton, L.L. and Hemming, B.C., eds. Iron chelation in plants and soil microorganisms. New York, Academic Press, 327-343.
  2. 1974. Research reports of Mazandaran Fertility and Soil Science Department. Soil and Water Research Institute, Tehran, Iran. (In persian)
  3. Arbona, V., Lopez-Climent, M.F., Perez-Clement, R.M. and Gomez-Cadenas, A. 2009. Maintenance of a high photosynthetic performance is linked to flooding tolerance in citrus. Environmental and Experimental Botany. 66: 135 – 142.
  4. Arnon, D.I. 1949. Copper enzyms in isolated chloroplast-polyphenoloxidase in Beta-vulgaris. Plant Physiol. 24: 1- 15.
  5. Asadi Kangarshahi, A. 2019. Study of Manganese Status and Management According to Growth Stages and Its Effect on the Yield and Quality of Citrus in East of Mazandaran. Soil Research, 33 (3), pp. 321-334. DOI:22092/IJSR.2019.116581.325. (In persian)  
  6. Asadi Kangarshahi, A. and Mahmoudi, M. 1990. The necessity of using zinc and manganese elements in citrus orchards in eastern Mazandaran. Soil and Water Research (Horticulture Special,12 (8), pp. 465-470. (In persian)
  7. Asadi Kangarshahi, A. and Akhlaghi Amiri, N. 2025. The importance of soil properties in orchards construction and nutrition of immature citrus trees. Handbook No. 67265. Soil and Water Research Institute, Karaj, Iran. (In persian)
  8. Asadi Kangarshahi, A. and Akhlaghi Amiri, N. 2014. Advanced and Applied Citrus Nutrition, (I). Agricultural Extension and Education Publications. (In persian)
  9. Asadi Kangarshahi, A. and Akhlaghi Amiri, N. 2017. Growth trend, nnutritional responses (microelements) and chlorosis degree of Swingle citromelo in calcareous soils of east of Mazandaran. Soil Research, 31 (2), pp. 177-195. DOI: 22092/IJSR.2017.113099. (In persian)
  10. Asadi Kangarshahi, A. and Akhlaghi Amiri, N. 2020. Evaluation of growth rate and vegetative and physiological characteristics of Satsuma mandarin on C-35 rootstock in some calcareous soils. Soil Research, 34 (2), pp. 215-234. DOI: 22092/IJSR.2020.122521. (In persian)
  11. Asadi Kangarshahi, A. and Akhlaghi Amiri, N. 2022. Evaluation of vegetative, physiological and chlorosis characteristics of Satsuma mandarin on Carrizo citrange in some calcareous soils. Soil Research, 36 (1), pp. 47-68. DOI: 22092/IJSR.2022.126890. (In persian)
  12. Asadi Kangarshahi, A. and Akhlaghi Amiri, N. 2022. Physiological and Nutritional Responses of Satsuma Mandarin on Gou Tou (Citrus aurantium L. var. Gou Tou) in Calcareous Soils. Soil Research, 38 (3), pp. 225-250. DOI: 22092/IJSR.2024.366158.749 (In persian)
  13. Asadi Kangarshahi, A. and Akhlaghi Amiri, N. 2022. Physiological and nutritional responses of Satsuma mandarin on Smooth flat seville in some calcareous soils. Soil Research, 36 (4), pp. 370-389. DOI:22092/IJSR.2023.360671.686. (In persian)
  14. Asadi Kangarshahi, A. and Akhlaghi Amiri, N. 2015. Investigation of the Chlorosis Degree index of different citrus rootstocks in calcareous soils of eastern Mazandaran. 14th Iranian Soil Science Congress. Vali-Asr University of Rafsanjan, Kerman, Iran. (In persian)
  15. Asadi Kangarshahi, A. 2018. Growth trend, nutritional responses and tolerace of Teroyer citrange in calcareous soils. Land Management, 6 (2), pp. 195-212. DOI: 22092/LMJ.2019.118338. (In persian)
  16. Asadi Kangarshahi, A. 2019. Nutition Management of Citrus Trees (1th). Agricultural Extension and Education Publications. (In persian)
  17. Asadi Kangarshahi, A., Sawaqebi, G.R., Samar, M. and Farahbakhsh, M. 2013. The possibility of using chlorophyll fluorescence to evaluate the tolerance of some citrus rootstocks to waterlogging stress. Agricultural Sciences, 15 (4), pp. 65-78. (In persian)
  18. Asadi Kangarshahi, A., Akhlaghi Amiri, N. and Fallah, A.R. 2019. Guide to sampling and interpretation of soil and leaf analysis results for citrus trees. Technical publication number 561. Soil and Water Research Institute, Karaj, Iran. (In persian)
  19. Asadi Kangarshahi, A., Akhlaghi Amiri, N., Mahmoudi, M. and Malkouti, M.J. 2001. Recognition of nutritional disorders in Mazandaran citrus orchards (restrictions and recommendations), II: micro-elements. Technical publication number 269. Agricultural education publication. (In persian)
  20. Asadi Kangarshahi, A., Akhlaghi Amiri, N., Samar, M. 2015. Possibility of using chlorosis degree and active Iron (Fe2+) to assess the tolerance of some citrus rootstocks to calcareous soils. Soil Research, 29 (2), pp. 269-284.  DOI: 22092/IJSR.2015.103433. (In persian)
  21. Basar, H. 2003. Analytical methods for evaluating chlorosis in peach trees. Communication in Soil Science and Plant Analysis. 34: 327-341.
  22. Bashour, I. and Sayegh, A.A. 2007. Methods of Analysis for Soils of Arid and Semi-Arid Regions. Food and Agriculture Organization of the United Nations, Rome. P. 49-53.
  23. Belkhodja, R., Morales, F., Abadia, A., Gomes, J. and Abadia, J. 1994. Chlorophyll fluorescence as a possible tool for salinity tolerance screening in Barley (Hordeum vulgare L.). Plant Physiol. 104: 667-673.
  24. Bowman, K.D. and Joubert, J. 2020. Citrus Rootstocks. In: Talon, M., Caruso, M. and Gmitter, F.G. (Eds), The Genus Citrus. Woodhead Publishing. pp. 105-127..
  25. Bremmer, J.M. 1996. Total Nitrogen. P.1085-1122. In: D. L. Sparks et al. (eds.) Methods of soil analysis. American Society of Agronomy, Madison, WI.
  26. Byrne, D.H., Rouse, R.E. and Sudahono, J. 1995. Tolerance to citrus rootstocks to lime-induced iron chlorosis. Subtrop. Plant Science. 47: 7 – 11.
  27. Cambra, M., Gorris, M.T., Marroquin, C., Roman, M.P., Olmos, A., Martinz, M.C., Mendoza, A.H. and Lopez, A. Incidence and epidemiology if citrus tristeza virus in the Valencian community of Spain. Virus Research. 71: 85 – 95.
  28. Caruso1, M., Giuffrida, A. and Malfa, S.L. Rootstocks for the Mediterranean citrus industry: current choices and new releases. Italus Hortus. 31:1-17.
  29. Castle, W.S, Pelos, R.R., Youtsey, C.O., Gmitter, F.G., Lee, R.F., Pwell, C.A. and Hu, X. 1992. Rootstocks similar to Sour orange for Florida citrus trees. Proc. Fla. State Hort. Soc. 105: 56-60.
  30. Castle, W.S. and Nunnallee, J. 2009. Screening citrus rootstocks and related selections in soil and solution culture for tolerance to low-iron stress. HortScience. 44: 638-645.
  31. Castle, W.S., Baldwin, J.C. and Muraro, R.P. 2010. Rootstocks and the performance and economic returns of' 'Hamlin' sweet orange trees. HortScience. 45: 875-881.
  32. Continella, A., Modica, G., Tribulato, A., La Malfa, S. and Gentile, A. 2023. 11-year survey of yield and fruit quality of blood orange as affected by rootstock. Acta Horticulturae. 1366: 131-138.
  33. Fadl, A., El-Otmani, M., Benismail, M.C., Abouatallah, A. and Jaouhari, E. 2008. Optimizing irrigation water supply in a young citrus orchard. Proceeding of The 11th International Society of Citriculture. pp. 573 – 578.
  34. Forner-Giner, M.A., Continella, A. and Grosser, J.W. 2020. Citrus Rootstock Breeding and Selection. In: A. Gentile, S. La Malfa, Z. Deng (eds) The Citrus Genome. Compendium of Plant Genomes, Springer, Cham, pp. 49-74.
  35. Gee, G.W. and Bauder, J.W. 1986. Particle size analysis. P. 383 – 411. In: A. Klute, (ed.) Methods of Soil Analysis. Part1. SSSA, Madison, WI.
  36. Hippler,, Cipriano, D.O., Boaretto, R.M.,Quaggio, J.A., Gaziola, S.A., Azevedo, R.A., Mattos-Jr, D. 2016. Citrus rootstocks regulate the nutritional status and antioxidant system of trees under copper stress. Environmental and Experimental Botany. 130: 42-52.
  37. Hussain, S., Curk, F., Dhuique-Mayer, C., Urban, L., Ollitrault, P., Luro, F., Morillon, R. 2012. Autotetraploid trifoliate orange (Poncirus trifoliata) rootstocks do not impact clementine quality but reduce fruit yields and highly modify rootstock/scion physiology. Sci. Hortic. 134, 100–107.
  38. Hussain, S., Sohail, H., Noor, I., Ahmad, S., Ejaz, S., Ali, M.A. and Khalid, M. F. 2023. Physiological and biochemical determinants of drought tolerance in tetraploid vs diploid sour orange citrus rootstock. The Journal of Horticultural Science and Biotechnology. 8: 1-14.
  39. Ibrahim, A.S. 2020. Growth and Yield of orange (Washington Navel) grafted on different citrus rootstocks. Agricultural Science and Technology. 12: 247-254.
  40. Incesu, M., Yesiloglu, T., Tuzcu, O., Cimen, B. and Yilmaz, B. 2016. Response of citrus rootstocks to iron deficiency under high PH conditions. Citrus Research and Technology. 37: 66-75.
  41. Izadpanah, B. 1976. Semi-comparative and general studies of soil science and land classification of Mazandaran province. Publication No. 492. Soil and Water Research Institute, Agricultural Research and Education Organization, Tehran, Iran. (In persian)
  42. Jones, J.B., Wolf, B. and Mills, H.A. 1991. Plant Analysis Handbook: A Practical Sampling, Preparation, Analysis and Interpretation Guide. Macro-Micro Pub. Inc., Athens, GA.
  43. Khoei, S.. 1991. Principles of Citrus Nutrition. Ministry of Culture and Islamic Guidance. Tehran, Iran. pp. 281. (In persian)
  44. Khoei, S. 1981. Study of the nutritional status of citrus trees in eastern Mazandaran. Publication No. 648, Soil and Water Research Institute, Tehran, Iran. (In persian)
  45. Kitson, R.E. and Mellon, M.G. 1944. Colorimetric determination of P as a molybdovanadate phosphoric acid. Ind. Eng. Chem. Anal. Ed. 16: 379-383.
  46. Larbi, A., Abadia, A., Abadia, J. and Morales, M. 2006. Down co-regulation of light absorption, photochemistry and carboxylation in Fe-deficient plants growing in different environment. Photosynth. Res. 89: 113-126.
  47. Lindsay, W.L. and Norvel, W.A. 1978. Development of a DTPA soil test for zinc, iron, manganese and copper. Soil Science Society of America Journal. 42: 421-428.
  48. Loeppert, R.H., Wei, L.C. and Ocumpaugh, W.R. 1994. Soil factors influencing the mobilization of iron in calcareous soils. In: Manthey, J.A., Crowley, D.A., Luster, D.G. (Eds.), Biochemistry of Metal Micronutrients in the Rhizosphere. Lewis Publishers. Boca Raton. PP. 343 – 360.
  49. Louzada, E.S., Rio, Setamou, H.S., M., Watson, J.W. and Swietlik, D.M. 2008. Evaluation of citrus rootstocks for the high pH, calcareous soils of South Texas. Euhytica. 164: 13 – 18.
  50. Martínez-Cuenca, M. R., Primo-Capella, A. and Forner-Giner, M.Á. 2021. Screening of ‘King’ mandarin hybrids as tolerant citrus rootstocks to flooding stress. Horticulturae. 7: 388-396.
  51. Martinez-Cuenca, M.R., Forner-Giner, M.A., Iglesias, D.J., Primo-Millo, E. and Legaz, F. 2013. StrategyI responses to Fe-deficiency of two citrus rootstocks differing in their tolerance to ironchlorosis. Scientia Horticulturae 153:56–63.
  52. Martinez-Guenca, M.R., Primo-Capella, A., Quinones, A., Bermejo, A. and Froner-Giner, M.A. 2017. Rootstock influence on iron uptake responses in citrus leaves and their regulation under the Fe paradox effect. Peer J. 5:e3553 https://doi.org/10.7717/peerj.3553
  53. Maxwell, K. and Johnson, G.N. 2000. Chlorophyll fluorescence: a practical guide. Journal of Experimental Botany. 51: 659-668.
  54. Mclean, E.O. 1982. Soil pH and lime requirement. P. 199- 224. In: A.L. Page et al. (ed.), Methods of Soil Analysis. Part 2. SSSA. Madison, WI.
  55. Mengel, K. 1995. Iron availability in plant tissues-iron chlorosis in calcareous soils, In: J. Abadia (Ed.), Iron Nutrition in Soils and Plant. Kluwer Academic Publishers, Dordrecht, Netherlands. 389-397.
  56. Mengel, K. and Kirkby, E. 2001. Principles of plant nutrition. 5th edition, Kluwer Academic Publisher, Dordrecht, The Netherlands.
  57. Mishra, A., Mishra, K.B., Hoermiller, H., Heyer, A.G. and Nedbal, L. 2011. Chlorophyll fluorescence emission as a reporter on cold tolerance in Arabidopis thaliana accession. Plant Signaling and Behavior. 6: 301-310.
  58. Morales, F., Grasa, R., Abadia, A. and Abadia, J. 1998. Iron chlorosis paradox in fruit trees, Journal of Plant Nutrition. 24: 815-825.
  59. Neaman, A. and Aguirre, L. 2007. Comparison of different methods for diagnosis of iron deficiency in avocado. Journal of Plant Nutrition. 30: 1098 – 1108.
  60. Nelson, D.W. and Sommers, L.E. 1982. Total cabon, organic carbon, and organic matter.P. 539 – 579. In: A.L. Page et al. (eds.), Methods of Soil Analysis. Part II. 2th ed. ASA, SSSA, Madison, WI.
  61. Olsen, S.R. and Sommers, L.E. 1982. In: A.L. Page et al., (Ed.), Methods of Soil Analysis. Part 2. Monograph no 9.  (pp. 403-430). Amrican Agronomy, Madison, WI.
  62. Pestana, M., David, M., de Varennes, A., Abadia, J. and Faria, E.A. 2001. Responses of Newhall orange trees to iron deficiency in hydroponics: effects on leaf chlorophyll, photosynthetic efficiency and root ferric chelate reductase activity. Jounal of Plant Nutrition. 24: 1609-1620.
  63. Rahimian, H., Alavi, S.V., Shaygan, J. and Hadizadeh, A. 1990. Transmission of citrus tristeza virus (CTV) by green aphid in northern Iran. Journal of Plant Diseases, 355 (1), pp. 31-40. (In persian)
  64. Romheld, V. 2000. The chlorosis paradox: Fe inactivation in leaves as a secondary eventin Fe deficiency chlorosis. Journal of Plant Nutrition. 23:1629–1643.
  65. Salisbury, F.B. and Ross, C.W. 1992. Plant Physiology. Wadsworth Publishing Company, Belmont, California. 682 pp.
  66. Schneider, A. 1997. Release and fixation of potassium by a loamy soil as affected by initial water content and potassium status of soil samoles. European Journal of Soil Science. 48: 263 – 271.
  67. A., Naqvi, S. and Singh, S. 2002. Citrus Germplasm Cultivar and Rootstocks. Natural Research Centre for Citrus, Kalyani publishers. New Delhi, India.
  68. Smith, M., Gultzow, D.L., Reid, M., Huie, J.E. and Newman, T.K. 2024. Extreme hybrids from the Australian citrus rootstock breeding program. Italus Hortus. 31: 43-55.
  69. Srivastava, A.K. and Singh, S. 2003. Citrus nutrition. International Book Distributing Co. (IBDC). India.
  70. Tehrani, M.M., Pasandideh, M. and Davoodi, M.H. 2011. Determining the distribution and recommendation of trace elements in irrigated lands of the provinces of Gilan, Mazandaran, Hamadan, Kermanshah, West Azerbaijan and Isfahan. Ministry of Agricultural Jihad, Agricultural Research, Education and Extension Organization, Soil and Water Research Institute. Final report of the research project. Publication No. 1618. Iran. (In persian)
  71. Wright, R.J. and Stuczynski, T.I. 1996. Atomic absorption and flame emission spectroscopy. In: Methods of Soil Analysis. Sparks, D.L. (Ed.), Part III, Chemical Methods, SSSA Book Series No.5, SSSA, Madison, WI. P. 65–91.