ارزیابی اثر تغییر کاربری اراضی بایر به باغ زیتون بر ویژگی‌های فیزیکی، شیمیایی و زیستی خاک: مطالعه موردی در استان گیلان

نوع مقاله : مقاله پژوهشی

نویسندگان

1 گروه خاکشناسی، دانشکده کشاورزی، دانشگاه زنجان، زنجان، ایران.

2 گروه خاکشناسی، دانشکده کشاورزی، دانشگاه زنجان، زنجان، ایران

3 مؤسسه تحقیقات خاک و آب، سازمان تحقیقات، آموزش و ترویج کشاورزی، کرج، ایران

4 مؤسسه تحقیقات خاک و آب، سازمان تحقیقات، آموزش و ترویج کشاورزی، کرج، ایران.

10.22092/ijsr.2025.371182.798

چکیده

تغییر کاربری اراضی، به‌ویژه در مناطق نیمه‌خشک که منابع خاک با تهدیدهای جدی مواجه هستند، یکی از مهم‌ترین عوامل مؤثر بر کیفیت خاک و پایداری اکوسیستم‌های خاکی محسوب می‌شود. هدف این مطالعه، بررسی اثر تغییر کاربری اراضی بایر به باغ زیتون بر ویژگی‌های فیزیکی، شیمیایی و زیستی خاک در منطقه لوشان، استان گیلان است. برای این منظور، سه منطقه همجوار با چشم‌انداز مشابه و شامل دو نوع کاربری بایر و باغ زیتون انتخاب و نمونه‌برداری از ۷۲ نقطه در عمق ۰–۳۰ سانتی‌متر انجام شد. سپس برخی از ویژگی‌های مهم شیمیایی، فیزیکی و زیستی آن­ها اندازه‌گیری شد. نتایج نشان داد که محتوای کربن آلی و نیتروژن کل خاک در باغ زیتون به‌ترتیب 2/82 و2/86 برابر بیشتر از زمین بایر بود. همچنین، مقدار فسفر و پتاسیم قابل جذب در باغ زیتون به‌ترتیب 18/42 درصد و 6/7 برابر بیشتر بود. ظرفیت تبادل کاتیونی در باغ زیتون 7/48 درصد افزایش یافت، در حالی که جرم مخصوص ظاهری خاک 5/19 درصد کاهش یافت. درصد رس قابل انتشار نیز در باغ زیتون به‌طور معناداری کاهش یافته و 18/25 درصد کمتر از زمین بایر بود. نرخ تنفس میکروبی در باغ زیتون 1/9 برابر بیشتر از زمین بایر ثبت شد. این یافته‌ها نشان داد که تغییر کاربری زمین‌های بایر به باغ زیتون منجر به بهبود قابل توجه ویژگی‌های فیزیکی، شیمیایی و زیستی خاک در مناطق نیمه‌خشک شد و با انجام مطالعات تکمیلی شاید بتواند به‌عنوان راهکاری مؤثر برای ارتقای بهره‌وری اراضی در مناطق مشابه مورد استفاده قرار گیرد.

کلیدواژه‌ها

موضوعات


عنوان مقاله [English]

Assessing the Effects of Converting Barren Land to Olive Orchards on Soil Physical, Chemical, and Biological Properties: A Case Study in Guilan Province

نویسندگان [English]

  • سمیرا همتی 1
  • Kamran Moravej 2
  • Mir Naser Navidi 3
  • Ahmad Golchin 2
  • Javad Seyedmohammadi 4
1 Department of Soil Science, Faculty of Agriculture, University of Zanjan, Zanjan, Iran
2 Department of Soil Science, Faculty of Agriculture, University of Zanjan, Zanjan, Iran
3 Soil and Water Research Institute, Agricultural Research Education and Extension Organization (AREEO), Karaj, Iran
4 Soil and Water Research Institute, Agricultural Research Education and Extension Organization (AREEO), Karaj, Iran
چکیده [English]

Background and Objectives: Land use change has been widely recognized as a major anthropogenic driver altering soil quality and ecosystem functions, particularly in semi-arid environments. The conversion of natural or unused lands to agricultural systems often induces significant transformations in the physical, chemical, and biological attributes of soils. In Iran, especially in the northern semi-arid zones, such changes have accelerated due to agricultural expansion, yet region-specific studies remain limited. The present study was designed to evaluate the impact of converting bare lands into olive orchards on key soil properties in Lushan, a representative semi-arid region in Guilan Province. Understanding how these changes affect soil functionality is essential for sustainable land management and ecological restoration.
 

 



Methodology: The study area is located in the Lushan district of Guilan Province, encompassing approximately 300 hectares and characterized by semi-arid climatic conditions with an average annual precipitation of 273 mm. Two distinct land uses (bare land and olive orchard) were selected for soil sampling. Composite soil samples were collected from each land use type at a depth of 0–30 cm, with 12 replicates per treatment. Physical properties such as texture, bulk density, and dispersible clay were measured using standard methods. Chemical properties including soil organic carbon (SOC), total nitrogen (TN), available phosphorus (Pava.), available potassium (Kava.), calcium (Ca), magnesium (Mg), pH, electrical conductivity (EC), and cation exchange capacity (CEC), were analyzed. Biological indicators such as basal respiration and microbial quotient were also assessed. Data were statistically analyzed using ANOVA and Duncan’s multiple range test at p < 0.01 significance level.
 
Results and Discussion: The findings revealed that land use conversion significantly influenced most soil parameters. SOC increased by 2.82-fold in olive orchards compared to bare land. Total nitrogen rose by 2.86 times, respectively, while Pava. improved by 18.42% in olive orchards. Available Kava., particularly in olive orchards, reached 105.26 mg/kg, 6.7 times higher than in bare soils. CEC increased by 7.48% in olive orchards, reflecting improved nutrient retention. EC levels rose by approximately 15% in agricultural soils, while pH declined from 8.42 in bare soils to 8.30 in olive orchard soils, indicating enhanced acid-neutral buffering and potential improvement in micronutrient availability. In terms of physical characteristics, bulk density was reduced by 5.19% in olive orchards, enhancing soil aeration and root growth potential. Dispersible clay content decreased by 25.18%, indicating greater soil structural stability and reduced erosion risk. Biologically, basal respiration increased significantly, with values of 0.540 mg CO₂g⁻¹ in olive orchards, compared to 0.283 mg CO₂ g⁻¹ in bare soils. This reflects heightened microbial activity and improved organic matter turnover in cultivated soils. These results confirm that the adoption of agricultural land uses under managed conditions can lead to substantial improvements in soil health by enhancing organic matter content, nutrient cycling, microbial function, and structural stability.
 

 



Conclusion: The conversion of bare lands to olive orchards under the semi-arid conditions of Guilan Province significantly enhanced soil physical, chemical, and biological properties. Improvements in SOC, nitrogen, phosphorus, potassium, and microbial activity suggest that such land use transformations, if well-managed, can contribute to restoring soil functionality and increasing sustainable productivity. However, monitoring potential issues, such as salinity buildup and nutrient leaching, remains essential. These findings underscore the importance of land use planning and adaptive soil management in semi-arid agroecosystems.

 

کلیدواژه‌ها [English]

  • Land Use Change
  • Olive Orchard
  • Soil Quality
  • Soil Organic Carbon Stock
  • Soil Properties
  1. Adiyah, F., Michéli, E., Csorba, A., Weldmichael, T. G., Gyuricza, C., Ocansey, C. M., ... & Fuchs, M. (2022). Effects of landuse change and topography on the quantity and distribution of soil organic carbon stocks on Acrisol catenas in tropical small-scale shade cocoa systems of the Ashanti region of Ghana. Catena, 216, 106366. https://doi.org/10.1016/j.catena.2022.106366
  2. Anderson, J. P. (1982). Soil respiration. Methods of soil analysis: part 2 chemical and microbiological properties9, 831-871. https://doi.org/10.2134/agronmonogr9.2.2ed.c41
  3. Beare, M. H., Hendrix, P. F., & Coleman, D. C. (1994). Water‐stable aggregates and organic matter fractions in conventional‐and no‐tillage soils.Soil Science Society of America Journal, 58(3), 777-786. https://doi.org/10.2136/sssaj1994.03615995005800030020x
  4. Beheshti, A. A. A., Raiesi, F., & GOLCHIN, A. (2011). The effects of soil disturbance due to land use change of forest lands to cultivated lands on biological soil quality indices of forest ecosystems of Northern Iran. https://sid.ir/paper/211228/en
  5. Blake, G. R., & Hartge, K. H. (1986). Bulk density. Methods of soil analysis: Part 1 Physical and mineralogical methods5, 363-375.
  6. Bower, C. A., Reitemeier, R. F., & Fireman, M. (1952). Exchangeable cation analysis of saline and alkali soils. Soil science73(4), 251-262.
  7. Buraka, T., Elias, E., & Lelago, A. (2022). Soil organic carbon and its' stock potential in different land-use types along slope position in Coka watershed, Southern Ethiopia. Heliyon8(8). https://doi.org/10.1016/j.heliyon.2022.e10261
  8. Chen, S., Zhang, G., Zhu, P., Wang, C., & Wan, Y. (2023). Impact of land use type on soil erodibility in a small watershed of rolling hill northeast China. Soil and Tillage Research, 227, 105597. https://doi.org/10.1016/j.still.2022.105597
  9. Cotrufo, M. F., Haddix, M. L., Kroeger, M. E., & Stewart, C. E. (2022). The role of plant input physical-chemical properties, and microbial and soil chemical diversity on the formation of particulate and mineral-associated organic matter. Soil Biology and Biochemistry, 168, 108648. https://doi.org/10.1016/j.soilbio.2022.108648
  10. de Pierri Castilho, S. C., Cooper, M., Dominguez, A., & Bedano, J. C. (2016). Effect of land use changes in eastern amazonia on soil chemical, physical, and biological attributes. Soil Science, 181(3/4), 133-147. DOI: 10.1097/SS.0000000000000152
  11. De Rosa, D., Ballabio, C., Lugato, E., Fasiolo, M., Jones, A., & Panagos, P. (2024). Soil organic carbon stocks in European croplands and grasslands: How much have we lost in the past decade?. Global Change Biology, 30(1), e16992. https://doi.org/10.1111/gcb.16992
  12. Ding, J. N. (2023). Effect Of Cultivation and Natural Restoration On Soil Microbial Functional Structure In Coldregion Wetlands. Applied Ecology & Environmental Research, 21(2). 15666. DOI: http://dx.doi.org/10.15666/aeer/2102_14711484
  13. Ebrahimi, M., S. Kashani & A. Moghadam, 2016. Effect of range land change to Aggricultural on soil
    Water and Soil journal, 1(26): 31-44 (in Persian).
  14. Estefan, G., Sommer, R., & Ryan, J. (2013). Methods of soil, plant, and water analysis: a manual for the West Asia and North Africa region. https://hdl.handle.net/20.500.11766/7512
  15. Eze, S., Magilton, M., Magnone, D., Varga, S., Gould, I., Mercer, T. G., & Goddard, M. R. (2023). Meta-analysis of global soil data identifies robust indicators for short-term changes in soil organic carbon stock following land use change. Science of the Total Environment, 860, 160484. https://doi.org/10.1016/j.scitotenv.2022.160484
  16. Ferreira, A. C. C., Leite, L. F. C., de Araújo, A. S. F., & Eisenhauer, N. (2016). Land‐use type effects on soil organic carbon and microbial properties in a semi‐arid region of northeast Brazil.Land Degradation & Development, 27(2), 171-178.  https://doi.org/10.1002/ldr.2282
  17. Frąc, M., Lipiec, J., Usowicz, B., Oszust, K., & Brzezińska, M. (2020). Structural and functional microbial diversity of sandy soil under cropland and grassland. PeerJ, 8, e9501. https://doi.org/10.7717/peerj.9501
  18. Gee, G.W. and Bauder J.M. (1986). Partical-size analysis. In Methods of Soil Analysis, Part 1, Physical and Mineralogical Methods. Agronomy Monogroph No. 9 (2nd edition), American Society of Agronomy, Madison, WI. Pp 383-411. https://doi.org/10.2136/sssabookser5.1.2ed.c15
  19. Geremew, B., Tadesse, T., Bedadi, B., Gollany, H. T., Tesfaye, K., & Aschalew, A. (2023). Impact of land use/cover change and slope gradient on soil organic carbon stock in Anjeni watershed, Northwest Ethiopia. Environmental Monitoring and Assessment, 195(8), 971. https://doi.org/10.1007/s10661-023-11537-7
  20. Guibert, H., Fallavier, P., & Roméro, J. J. (1999). Carbon content in soil particle size and consequence on cation exchange capacity of alfisols. Communications in soil science and plant analysis30(17-18), 2521-2537. https://doi.org/10.1080/00103629909370392
  21. Hemmati, S. , Moravej, K. , Golchin, A. and Askari, M. S. (2025). Assessment of the Impact of Land Use Change on Soil Physical, Chemical, and Biological Properties: A Case Study in the Loshan Region, Gilan Province. Iranian Journal of Soil and Water Research, (), -. doi: 10.22059/ijswr.2025.395186.669938. (In Persian). 22059/ijswr.2025.395186.669938
  22. Hesse P.R. 1971. A text book of soil chemical analysis. John Murray. London. https://doi.org/10.1201/9780203739433
  23. Hydari, N., Mousavi, S. B., Beheshti Ale Agha, A., Rakhsh, F., & Karimi, I. (2022). The effect of land use change on some physical, chemical and biological characteristics of soil. Iranian Journal of Soil and Water Research, 53(7), 1625-164. (In Persian). 22059/ijswr.2022.344871.669298
  24. Javadi S, Zehtabian G, Khosravi H, Abolhasani A.(2020) Assessing the impact of land use change on Soil physical and chemical characteristics (Case study: Eshtehard, Alborz province).220-208:(2) 14. (In Persian). 1001.1.20080891.1399.14.2.4.4
  25. Joshi, R. K., & Garkoti, S. C. (2023). Influence of vegetation types on soil physical and chemical properties, microbial biomass and stoichiometry in the central Himalaya. Catena, 222, 106835. https://doi.org/10.1016/j.catena.2022.106835
  26. Knudsen D., Peterson G.A. and Pratt P.F. (1982). Lithium, sodium and potassium. p. 225-246. In: A.L. Page (ed) Methods of Soil Analysis. Part 2. America Society of Agronomy. Madison, WI. https://doi.org/10.2134/agronmonogr9.2.2ed.c13
  27. Kooch, Y., Ghorbanzadeh, N., Kuzyakov, Y., Praeg, N., & Ghaderi, E. (2022). Investigation of the effects of the conversion of forests and rangeland to cropland on fertility and soil functions in mountainous semi-arid landscape. Catena, 210, 105951. https://doi.org/10.1016/j.catena.2021.105951
  28. Krogh, L., Breuning-Madsen, H., & Greve, M. H. (2000). Cation-exchange capacity pedotransfer functions for Danish soils. Acta Agriculturae Scandinavica, Section B-Plant Soil Science50(1), 1-12. https://doi.org/10.1080/090647100750014358
  29. Leul, Y., Assen, M., Damene, S., & Legass, A. (2023). Effects of land use types on soil quality dynamics in a tropical sub-humid ecosystem, western Ethiopia. Ecological Indicators, 147, 110024. https://doi.org/10.1016/j.ecolind.2023.110024
  30. Levy, G. J., Dag, A., Raviv, M., Zipori, I., Medina, S., Saadi, I., ... & Laor, Y. (2018). Annual spreading of olive mill wastewater over consecutive years: Effects on cultivated soils' physical properties. Land Degradation & Development, 29(1), 176-187. https://doi.org/10.1002/ldr.2861

 

  1. Li, C., Wang, H., Zhao, L., & Shen, H. (2024). Effect of long-term land use change on soil organic carbon fractions and functional groups. Arid Land Research and Management, 38(2), 182-200. https://doi.org/10.1080/15324982.2023.2284882
  2. Li, H., Zhu, H., Liang, C., Wei, X., & Yao, Y. (2022). Soil erosion significantly decreases aggregate-associated OC and N in agricultural soils of Northeast China. Agriculture, Ecosystems & Environment, 323, 107677. https://doi.org/10.1016/j.agee.2021.107677
  3. Llimós, M., Segarra, G., Sancho-Adamson, M., Trillas, M. I., & Romanyà, J. (2021). Impact of olive saplings and organic amendments on soil microbial communities and effects of mineral fertilization. Frontiers in Microbiology, 12, 653027. https://doi.org/10.3389/fmicb.2021.653027
  4. Martínez-Mena, M., Carrillo-López, E., Boix-Fayos, C., Almagro, M., Franco, N. G., Díaz-Pereira, E., ... & De Vente, J. (2020). Long-term effectiveness of sustainable land management practices to control runoff, soil erosion, and nutrient loss and the role of rainfall intensity in Mediterranean rainfed agroecosystems. Catena, 187, 104352. https://doi.org/10.1016/j.catena.2019.104352
  5. McGrath, D. A., Smith, C. K., Gholz, H. L., & Oliveira, F. D. A. (2001). Effects of land-use change on soil nutrient dynamics in Amazonia. Ecosystems, 4, 625-645. https://doi.org/10.1007/s10021-001-0033-0
  6. Meena, V. S., Mondal, T., Pandey, B. M., Mukherjee, A., Yadav, R. P., Choudhary, M., ... & Pattanayak, A. (2018). Land use changes: Strategies to improve soil carbon and nitrogen storage pattern in the mid-Himalaya ecosystem, India. Geoderma321, 69-78. https://doi.org/10.1016/j.geoderma.2018.02.002
  7. Mganga, K. Z., Rolando, J., Kalu, S., & Karhu, K. (2024). Microbial soil quality indicators depending on land use and soil type in a semi-arid dryland in Kenya. European Journal of Soil Biology, 121, 103626. https://doi.org/10.1016/j.ejsobi.2024.103626
  8. Miju, C., Kiflu, A., & Gizachew, S. (2025). Effects of land use/land cover change on soil physicochemical properties and soil carbon stock in Kochore district, southern Ethiopia. Arabian Journal of Geosciences, 18(2), 41. https://doi.org/10.1007/s12517-025-12181-w
  9. Nanganoa, L. T., Okolle, J. N., Missi, V., Tueche, J. R., Levai, L. D., & Njukeng, J. N. (2019). Impact of Different Land‐Use Systems on Soil Physicochemical Properties and Macrofauna Abundance in the Humid Tropics of Cameroon. Applied and Environmental Soil Science, 2019(1), 5701278. https://doi.org/10.1155/2019/5701278
  10. Olsen S.R., Cole C.V., Watanabe F.S. and Dean L.A. (1954). Estimation of Available Phosphorous in Soils by Extraction with Sodium Bicarbonate; U.S. Department of Agriculture: Washington, D.C., USDA Circ. 939.
  11. Page A.L., Miller R.H., and Keeney D.R.( 1982). Methods of Soil Analysis, part2, chemical and microbiological properties. American Society of Agronomy, Inc. Soil Science Society of Aamerica, Madison, WI. https://doi.org/10.2134/agronmonogr9.2.2ed.c33
  12. Poeplau, C., & Don, A. (2013). Sensitivity of soil organic carbon stocks and fractions to different land-use changes across Europe. Geoderma, 192, 189-201. https://doi.org/10.1016/j.geoderma.2012.08.003
  13. Ramos, T. V., Santos, L. A. C., de Souza, W. G., de Souza, K. R., Lima, N. L., Guimaraes, L. E., ... & de Melo e Silva-Neto, C. (2018). Chemical attributes of Brazilian Cerrado soil under different management systems. Australian Journal of Crop Science12(3), 505-510. https://search.informit.org/doi/10.3316/informit.608172939903110
  14. Samie, F. , Yaghmaeian Mahabadi, N. , Abrishamkesh, S. and Maslahatjou, A. (2022). Impact of land use change on erodibility and soil quality indicators (case study: Sidasht, Guilan Province). Agricultural Engineering45(1), 57-78. (In Persian). https://doi.org/10.22055/agen.2022.39858.1630
  15. Silva-Sánchez, A., Soares, M., & Rousk, J. (2019). Testing the dependence of microbial growth and carbon use efficiency on nitrogen availability, pH, and organic matter quality. Soil Biology and Biochemistry, 134, 25-35. https://doi.org/10.1016/j.soilbio.2019.03.008
  16. Soil Survey Staff. 1996. Soil Survey Laboratory Methods Manual. Soil Survey Investigations Report No. 42.
  17. Solly, E. F., Weber, V., Zimmermann, S., Walthert, L., Hagedorn, F., & Schmidt, M. W. (2020). A critical evaluation of the relationship between the effective cation exchange capacity and soil organic carbon content in Swiss forest soils. Frontiers in Forests and Global Change3, 98. https://doi.org/10.3389/ffgc.2020.00098
  18. Sun, C., Liu, G., & Xue, S. (2016). Land-use conversion changes the multifractal features of particle-size distribution on the Loess Plateau of China. International Journal of Environmental Research and Public Health13(8), 785. https://doi.org/10.3390/ijerph13080785
  19. Taghipour, M. , Yaghmaeian Mahabadi, N. and Shabanpour, M. (2023). Assessment of soil quality indices using multivariate analysis in different land uses (case study: Tootkabon, Guilan province). Agricultural Engineering46(3), 251-271. https://doi.org/10.22055/agen.2023.44957.1684
  20. Tellen, V. A., & Yerima, B. P. (2018). Effects of land use change on soil physicochemical properties in selected areas in the North West region of Cameroon. Environmental systems research, 7(1), 1-29. https://doi.org/10.1186/s40068-018-0106-0
  21. Torres, J. L. R., Costa, D. D. D. A., Silveira, B. D. S., Vieira, D. M. D. S., & Lemes, E. M. (2020). Soil physical attributes in long-term soil management systems (Tillage and No-till). Journal of Agricultural Science, 12(4), 194. https://doi.org/10.3390/agronomy13040966
  22. Wang, B., Waters, C., Orgill, S., Gray, J., Cowie, A., Clark, A. and Li Liu, D., 2018. High resolution mapping of soil organic carbon stocks using remote sensing variables in the semi-arid rangelands of eastern Australia. Science of the Total Environment, 630, pp.367-378. DOI: 1016/j.scitotenv.2018.02.204
  23. Walkley A. and Black I.A. (1934). An examination of Degtjareff method for determining soil organic matter and a proposed modification of the chromic acid titration method. Soil Science, 37: 29-37.
  24. Xia, S., Song, Z., Yu, B., Fan, Y., Tony, V., Guo, L., ... & Wang, H. (2024). Land use changes and edaphic properties control contents and isotopic compositions of soil organic carbon and nitrogen in wetlands. Catena241, 108031. https://doi.org/10.1016/j.catena.2024.108031
  25. Yan, Y., Wang, C., Zhang, J., Sun, Y., Xu, X., Zhu, N., ... & Chen, J. (2022). Response of soil microbial biomass C, N, and P and microbial quotient to agriculture and agricultural abandonment in a meadow steppe of northeast China. Soil and Tillage Research, 223, 105475. https://doi.org/10.1016/j.still.2022.105475
  26. Yao, M., Shao, D., Lv, C., An, R., Gu, W., & Zhou, C. (2021). Evaluation of arable land suitability based on the suitability function-A case study of the Qinghai-Tibet Plateau. Science of The Total Environment, 787, 147414. https://doi.org/10.1016/j.scitotenv.2021.147414
  27. Yuan, J., Yao, Y., Guan, Y., Sadiq, M., Li, J., Liu, S., ... & Yan, L. (2024). Effects of land use patterns on soil properties and nitrous oxide flux on a semi-arid environmental conditions of Loess Plateau China. Global Ecology and Conservation, 51, e02899. https://doi.org/10.1016/j.gecco.2024.e02899
  28. Yuefeng, G., Fucang, Q., Yunfeng, Y. A. O., & Wei, Q. I. (2014). Effects of land use changes on soil organic carbon and soil microbial biomass carbon in low hills of North Yanshan Mountains. Range Management and Agroforestry35(1), 15-21.
  29. Zhang, W., Xu, Y., Gao, D., Wang, X., Liu, W., Deng, J., ... & Ren, G. (2019). Ecoenzymatic stoichiometry and nutrient dynamics along a revegetation chronosequence in the soils of abandoned land and Robinia pseudoacacia plantation on the Loess Plateau, China. Soil Biology and Biochemistry, 134, 1-14. https://doi.org/10.1016/j.soilbio.2019.03.017
  30. Zhu, Z., Chen, J., Hu, H., Zhou, M., Zhu, Y., Wu, C., ... & Wang, J. (2024). Soil quality evaluation of different land use modes in small watersheds in the hilly region of southern Jiangsu. Ecological Indicators, 160, 111895. https://doi.org/10.1016/j.ecolind.2024.111895