رهاسازی آهن و پتاسیم از کانی‌های مسکویت و ورمی‌کولیت توسط برخی باکتری‌های محرک رشد گیاه

نوع مقاله : مقاله پژوهشی

نویسندگان

1 دانش آموخته کارشناسی ارشد علوم و مهندسی خاک، دانشکده کشاورزی، دانشگاه شهید چمران اهواز

2 استاد گروه علوم و مهندسی خاک، دانشکده کشاورزی، دانشگاه شهید چمران اهواز

3 دانشیار گروه علوم و مهندسی خاک، دانشکده کشاورزی، دانشگاه شهید چمران اهواز

چکیده

پتاسیم و آهن از عناصر غذایی ضروری گیاهان هستند و نقش مهمی در رشد و توسعه گیاهان ایفا می­کنند. از طرفی، کمبود آهن قابل استفاده در خاک در بیشتر مناطق کشاورزی دنیا و با افزایش آهک خاک و کمبود پتاسیم قابل استفاده در خاک به علت تثبیت، رواناب، آبشویی و فرسایش رخ می­دهد. تحقیق حاضر با هدف بررسی کارایی باکتری­های ریزوسفری در آزادسازی پتاسیم و آهن از کانی­های نامحلول در شرایط آزمایشگاهی انجام گردید. آزمایش به­صورت فاکتوریل در قالب طرح کاملاَ تصادفی با دو نوع کانی (مسکویت و ورمی­کولیت) و چهار سویه از باکتری­های آزاد کننده پتاسیم شامل Enterobacter cloacae سویه­های (R33 وE1) و Pseudomonas putida سویه­های(E49 و R9) و شاهد (بدون تلقیح با باکتری) در سه دوره زمانی (7، 14 و 28 روز) در سه تکرار انجام شد. محیط کشت الکساندرف حاوی 2 گرم کانی مسکویت و ورمیکولیت برای بررسی توانایی آزادسازی پتاسیم و آهن توسط باکتری­ها مورد استفاده قرار گرفت. نتایج آزمایش نشان دهنده معنی­داری اثر متقابل باکتری، کانی و زمان بر آزادسازی آهن و معنی­داری اثر متقابل باکتری و کانی در رهاسازی پتاسیم در سطح یک درصد بود. بیشترین مقدار پتاسیم رها شده مربوط به کانی ورمیکولیت و در حضورE. cloacae R33  و کمترین مقدار به کانی مسکویت در حضور P. putida E49 بود. بیشترین آهن رها شده از کانی ورمیکولیت و مسکویت بهE. cloacae R33اختصاص داشت. بطور کلی میزان رهاسازی آهن و پتاسیم از کانی ورمی­کولیت بیشتر از مسکویت بود. مقدار pH نمونه­ها در حضور تمام سویه­ها و هر دو کانی نسبت به شاهد کاهش نشان داد. بنابراین می­توان از E. cloacae R33 به عنوان باکتری کارامد در رهاسازی پتاسیم و آهن در تحقیقات بعدی استفاده نمود.

کلیدواژه‌ها


عنوان مقاله [English]

Iron and Potassium Release from Muscovite and Vermiculite by Some Plant Growth Promoting Bacteria

نویسندگان [English]

  • R. Eslami Seyyedmahaleh 1
  • A. Landi 2
  • N. Enayatizamir 3
  • S. Hojati 3
چکیده [English]

Potassium and iron as essential plant nutrients play important role in growth and development of plants. However, in most agricultural areas of the world, deficiency of available iron in the soil is prevalent and it is expected to be intensified by increasing the lime content in soil, while insufficiency of available potassium in the soil occurs due to fixation, runoff, leaching, and erosion. Potassium solubilizing bacteria have the capacity to dissolve potassium from insoluble K minerals. This research was carried out to dissolve iron and potassium from insoluble minerals by rhizospheric bacteria. The experiment was done as factorial with completely randomized design. Treatments included minerals (muscovite and vermiculite) and four strains of potassium releasing bacteria including Enterobacter cloacae (R33 and E1 strains) and Pseudomonas putida (R9 and E49 strains) and the control (without inoculation) during three time periods (7, 14 and 28 days). Aleksandrov broth medium containing 2 grams of each mineral was used in order to study iron and potassium release. The results showed significant (p<0.01) interaction effects of strains, minerals, and period of incubation on iron release and also significant (p<0.01) interaction effects of strains and minerals on potassium release. Highest potassium solubilization belonged to vermiculite in the presence of E. cloacae R33 and the lowest amount was in the presence of P. putida E49. Highest iron release was from vermiculite in the presence of E. cloacae R33. In general, the release of iron and potassium from vermiculite was more than muscovite. The pH of the medium was reduced significantly at the presence of all strains and minerals, in comparison to the control. Thus, we can use E.cloaese R33 as an efficient bacterium to release potassium and iron in the future research.

کلیدواژه‌ها [English]

  • Aleksandrov broth
  • Solubilization
  • soil
  • Rhizosphere
  • weathering
  1. سلیمان­زاده، م، خادمی، ح و م، سپهری. 1393. تأثیر سویه­های Bacillus cereus بر آزادسازی پتاسیم و آهن از کانی­های میکایی. مجله مهندسی زراعی، جلد 37، شماره 2، 72-59.
  2. ضرابی، م. جلالی، م و ش، مهدوی حاجیلویی.1385. بررسی سرعت رهاسازی پتاسیم غیر تبادلی و قابلیت جذب آن با استفاده از اسید مالیک در بعضی از خاک های استان همدان. مجله علوم کشاورزی ایران. جلد37، 6: 964-951.
  3. نوروزی، س، ح، خادمی. 1388. آزادسازی پتاسیم از مسکویت و فلوگوپیت توسط چند اسید آلی. مجله آب و خاک (علوم و منابع کشاورزی). ج 23، ش 1 . 263- 273.
  4. Ams, D. A., Maurice, P., Hersman, L., and Forsythe, J. 2002. Siderophore production by an aerobic Pseudomonas mendocina bacterium in the presence of kaolinite. Chemical Geology, 188(3-4): 161-170.
  5. Badr, M. A., Shafei, A. M., and Sharaf El-Deen, S. H. 2006.The dissolution of K and P-bearing minerals by silicate dissolving bacteria and their effect on sorghum growth. Res. J. Agric. Biol. Sci. 2: 5–11.
  6. Basak, B.B., and Biswas, D.R., 2009. Influence of potassium solubilizing microorganisms (Bacillus mucilaginosus) and waste mica on potassium uptake dynamics by Sudangrass (Sorghum vulgare) grown under two alfisols. Plant Soil. 317: 235–255.
  7. Bhatti, T.M., Bigham, J.M., Vuorinen, A., and O.H. Tuovinen. 2011. Weathering of biotite in Acidithiobacillus ferrooxidans Geomicrobiol. J. 28: 130-134.
  8. Binbin, M.O. and L. Bin. 2011. Interactions between Bacillus mucilaginosus and silicate minerals (weathered adamellite and feldspar): Weathering rate, products, and reaction mechanisms. Chin. Geochem. 30: 187–192.
  9. Boyle, J. R. Voigt, G. k. and Sawhney, B.L. 1974.Chemical weathering of biotite by organic acids. Soil Sci. 11(1): 42-45.
  10. Chen, Y.P., Rekha, P.D., Arun, A.B., and F.T. Shen. 2006. Phosphate solubilizing bacteria from subtropical soil and their tricalcium phosphate solubilizing abilities. Appl. Soil Ecol. 34: 33–41.
  11. Eskandari,H. 2011. The importance of iron (Fe) in plant products and mechanism of its uptake by plant. J. Appl. Environ. Biol. Sci. 1(10): 448-452.
  12. Girgis, M. G. Z., Khalil, H.M.A. and M.S. Sharaf. 2008. In Vitro evaluation of rock phosphate and potassium solubilizing potential of some Bacillus Aust. J. Basic Appl. Sci. 2 (1):68-81.
  13. Groudev, S.N. 1987. Use of heterotrophic microorganisms in mineral biotechnology. Acta Biotechnologica. 7: 299–306.
  14. Han, H., Supanjani, S., and K.D. Lee. 2006. Effect of co-inoculation with phosphate and potassium solubilizing bacteria on mineral uptake and growth of pepper and cucumber. Plant Soil Environ. 52: 130-136.
  15. Hu, X., and G.L. Boyer. 1996. Siderophore-mediated aluminum uptake by Bacillus megateriumATCC 19213. Applied and Environmental Microbiology. 62: 4044-4048.
  16. Huang, P. M., and S, Song. 1988. Dynamics of potassium release from potassiumbearing minerals as influenced by oxalic and citric acids. Soil Sci. Soc. Am. 52: 383-390.
  17. Khyamim, F., Khademi, H., and M. H. Salehi. 2010. Mineralogical changes in clay-sized phlogopite and muscovite as affected by endophyte fungi-tall fescue symbiosis. J. Water Soil. 24: 3. 545-556.
  18. Liu, W., Xu, X., Wu, X., Yang, Q., Luo, Y., and P. Christie. 2006. Decomposition ofsilicate minerals by Bacillus mucilaginosus in liquid culture. Environ. Geochem. 28: 133-140.
  19. Martin, W. H., and Sparks, D. L.1985.On the behavior of non-exchangeable potassium in soils.Commun. Soil Sci. Plant Anal. 16:133-162.
  20. Parmar , P., and S. S. Sindhu. 2013. Passium solubilization by rhizosphere bacteria: influence of nutritional and environmental conditions. Microbiol. Res. 3(1): 25-31.
  21. Read, J.J., Reddy, K.R., and J.N. 2006.  Yield and quality of upland cotton as influenced by nitrogen and phosphorus. European Journal of Agronomy.  24:  282-290.
  22. Sheng, X.F. 2005. Growth promotion and increased potassium uptake of cotton and rape by a potassium releasing strain of Bacillus edaphicus. Soil. Biol. Biochem. 37: 1918-1922.
  23. Sheng, X.F. and L. Y. He. 2006. Solubilization of potassium bearing minerals by a wild type strain of Bacillus edaphicus and its mutants and increased potassium uptake by wheat. Can. J. 52: 66 -72.
  24. Sheng, X.F., He, L.Y., and W.Y. Huang. 2002. The conditions of releasing potassium by a silicate-dissolving bacterial strain NBT. Agric. Sci. China.1: 662–666.
  25. Singh, G., Biswas, D.R. and T.S. Marwah. 2010. Mobilization of potassium from waste mica by plant growth promoting rhizobacteria and its assimilation by maize (Zea mays) and wheat (Triticum aestivum ). J. Plant Nutr. 33: 1236-1251.
  26. Song, W., Ogawa, N., Oguchi, C.T., Hatta, T., and Y. Matsukura. 2007. Effect of Bacillus subtilis on granite weathering: a laboratory experiment. Catena. 70: 275-281.
  27. Srinivasarao, C., Rupa, T. R., Subba Rao, A., Ramesh, G and S. K. Bansal. 2006. Release kinetics of nonexchangeable potassium by different extractants from soils of varying mineralogy and depth. Commun. Soil Sci. Plant Anal. 37(3): 473-491.
  28. Štyriakova, I., Galko, I., and P. Bezdicka. 2003. The release of iron-bearing minerals and dissolution of feldspars by heterotrophic bacteria of Bacillus Ceramics − Silikáty, 47 (1):  20-26.
  29. Styriakova, I., Styriak, I., and H. Oberhansli. 2012. Rock weathering by indigenous heterotrophic bacteria of Bacillus at different temperature: a laboratory experiment. Miner. Petrol. 105:135–144.
  30. Sugumaran, P. and B. Janarthanam. 2007. Solubilization of potassium containing minerals by bacteria and their effect on plant growth. W. J. Agricu. Sci. 3(3): 350-355.
  31. Surapaneni, A., Palmer, A.S., Tillman, R.W., Kirkman, J.H., Gregg, P.E.H., 2002. Themineralogy andpotassium supplying power of some loessial and related soils of New Zealand. Geoderma.110: 191– 204.
  32. Ullman, W.J., Kirchman, D.L., and S.A. Welch. 1996. Laboratory evidence for microbial mediated silicate mineral dissolution in nature. Chem. Geol. 132:11–17.
  33. Uroz, S., Calvaruso, C., Turpault, M. P., and P. Frey-Klett. 2009. Mineral weathering by bacteria: ecology, actors and mechanisms. Trends Microbiol. 17(18): 378-387.
  34. Zapata, F., and R.N.Roy. 2004. Use of phosphate rock for sustainable agriculture. FAO and IAEA, Rome, Italy.