اثر بیوچار کود گاوی بر ترکیب شیمیایی اسفناج رشد یافته در وضعیت‌های رطوبتی مختلف در یک خاک آهکی

نویسندگان

1 دانش‌آموخته کارشناسی‌ارشد بخش علوم و مهندسی خاک، دانشکده کشاورزی، دانشگاه شیراز

2 دانشیار بخش علوم و مهندسی خاک، دانشکده کشاورزی، دانشگاه شیراز

3 استاد بخش مهندسی آب، دانشکده کشاورزی، دانشگاه شیراز

چکیده

تولیدموفقیت­آمیزگیاهانمستلزمخاک مناسبووجودمقدارکافیازعناصرغذاییو قابلاستفادهگیاهاناست.عناصرغذایینهتنها بایدبه­صورتترکیباتیباشندکهبه­سهولت مورداستفادهگیاهانقرارگیرند،بلکهتعادلبینمقدارآنهانیزحائزاهمیتاست. مواد آلی و موادی که برای اصلاح خاک و یا مقابله با شرایط تنش استفاده می­شوند می­توانند بر غلظت عناصر غذایی در گیاه مؤثر باشند. بنابراین، این پژوهش با هدف بررسی اثر سطوح بیوچار کود گاوی بر ترکیب شیمیایی گیاه اسفناج (رقم Viroflay) رشد یافته در شرایط تنش رطوبتی در یک خاک آهکی در شرایط گلخانه­ای به‌صورت فاکتوریل ودرقالبطرحکاملاًتصادفی با سه تکرار انجام شد. تیمارها شامل چهار سطح بیوچار (صفر، 25/1%، 50/2% و 5 درصد وزنی) و سه سطح رطوبتی (ظرفیت مزرعه (بدون تنش)، 70% و 55 درصد ظرفیت مزرعه) بود. نتایج نشان داد که اعمال سطوح تنش رطوبتی سبب کاهش معنی­دار جذب همه عناصر مورد مطالعه و افزایش غلظت عناصر سدیم، پتاسیم، فسفر و نیتروژن در اندام هوایی اسفناج شد. همچنین کاربرد 25/1 درصد بیوچار سبب افزایش منگنز، سدیم، پتاسیم، کاربرد 5/2 درصد بیوچار سبب افزایش فسفر، منیزیم، سدیم، پتاسیم و کاربرد 5 درصد بیوچار نیز سبب افزایش منگنز، نیتروژن، فسفر، منیزیم و سدیم در اندام هوایی اسفناج شد. به­طورکلی، کاربرد بیوچار و سطوح رطوبتی خاک سبب تغییر ترکیب شیمیایی و غلظت و جذب عناصر (به­ویژه عناصر پرمصرف) در اندام هوایی اسفناج شد. بنابراین در مواردی که به منظور کاهش اثرات تنش رطوبتی بر گیاه از بیوچار استفاده می­شود بایستی به تغییرات احتمالی در ترکیب شیمیایی گیاه و غلظت عناصر نیز توجه شود و این موضوع در مدیریت حاصلخیزی خاک و تغذیه گیاه در مناطق خشک مد نظر قرار گیرد. بایستی توجه شود که اثر بیوچار بر ترکیب شیمیایی گیاه و همچنین ویژگی­های خاک به نوع مواد اولیه مورد استفاده و شرایط تهیه بیوچار، نوع و رقم گیاه و شرایط خاک مورد مطالعه بستگی دارد بنابراین توصیه می­شود به منظور دستیابی به نتایج وسیع­تر و مطمئن­تر، آزمایش در شرایط مزرعه برای گیاهان مختلف و با استفاده از بیوچار تولید شده از منابع متفاوت و در شرایط مختلف انجام شود.  

کلیدواژه‌ها


عنوان مقاله [English]

Effect of Cattle Manure Biochar on the Chemical Composition of Spinach Grown at Different Water Conditions in a Calcareous Soil

نویسندگان [English]

  • E. Gavili 1
  • A. A. Moosavi 2
  • A. A. Kamgar Haghighi 3
1 M.Sc. Graduate, Department of Soil Science, College of Agriculture, Shiraz University
2 Associate Professor., Department of Soil Science, College of Agriculture, Shiraz University
3 Professor., Department of Water Engineering, College of Agriculture, Shiraz University
چکیده [English]

Suitable soil and availability of adequate nutrient elements are necessary for successful plant production. Nutrient elements not only should be in readily available form but also their balance is important. Organic matter and soil amendments that are used in soil reclamation or for prevailing the stress conditions can influence the concentration of nutrient elements. Therefore, this research aimed to evaluate the effect of cattle manure biochar on the chemical composition of spinach (Virofly var.) grown at different water conditions of a calcareous soil by conducting a factorial greenhouse experiment arranged in a completely randomized design with three replications. Treatments consisted of four biochar levels (0, 1.25%, 2.5%, and 5% w/w) and three levels of water status (field capacity, FC (no stress), 0.70 FC, and 0.55 FC). Results indicated that water stress resulted in a significant decrease in the uptake of all studied nutrient elements and significant increase in shoot concentration of Na, K, P and N of spinach. Furthermore, application of 1.25% biochar increased Mn, Na, and K; application of 2.5% biochar increased P, Mg, Na, and K and application of 5% biochar also increased Mn, N, P, Mg, and Na concentration in the shoot of spinach. In general, application of biochar and water conditions resulted in significant changes in chemical composition and nutrient concentration and uptake (especially for macro nutrients) of spinach shoot. Therefore, in the cases that biochar is used for mitigating the adverse effects of water stress, probable changes in chemical composition and nutrient concentration of plants should be considered, and this issue must be considered in plant nutrition and soil fertility management in arid regions. It should be noticed that the influence of biochar on the chemical composition and also soil attributes depends on the source material and preparation conditions of biochar, the type and variety of plant, and the studied soil conditions. Therefore, to obtain the wider and more accurate results, it is recommended to conduct these types of researches for other plant species by applying different sources and conditions for preparing biochar under field conditions.

کلیدواژه‌ها [English]

  • Macro nutrients
  • Micronutrients
  • Field capacity
  • Water stress
  • Nutritional status
  1. باقری، ع. ر. و ح. حیدری شریف­آباد. 1386. بررسی اثر تنش خشکی بر عملکرد و اجزای عملکرد و محتوی یون­ها در گیاه جو بدون پوشینه (Hordeum sativum L.). مجله دانش نوین کشاورزی، سال سوم، شماره 7، صفحات: 1 تا 15.
  2. حیدری.، م. و رضاپور، ع. 1390. اثر تنش خشکی و کود گوگرد بر عملکرد دانه، کلروفیل و غلظت عناصر معدنی در گیاه دارویی سیاه دانه. مجله تولید و فراوری محصولات زراعی و باغی. سال اول. شماره اول. صفحات 81 تا 90.
  3. ساجدی، ن. ع. و ف. رجالی. 1390. تأثیر تنش خشکی، کاربرد روی و تلقیح میکوریز بر جذب عناصرکم مصرف در ذرت. مجله پژوهش­های خاک (علوم خاک و آب) الف، جلد 25، شماره 2، صفحات: 83 تا 92.
  4. ستایش­مهر، ز. و ع. گنجعلی. 1392. بررسی اثرات تنش خشکی بر رشد و خصوصیات فیزیولوژیکی گیاه شوید. نشریه علوم باغبانی (علوم و صنایع کشاورزی). جلد 27 ، شماره 1، صفحات: 27 تا 35.
  5. صالحی، م.، ع. ر. کوچکی و م. نصیری محلاتی. 1382. میزان نیتروژن و کلروفیل برگ به عنوان شاخصی از تنش خشکی در گندم. مجله پژوهش­های زراعی ایران، جلد 1، شماره 3، صفحات: 199 تا 204.
  6. گویلی، ا.، ع. ا. موسوی و ع. ا. کامگارحقیقی. 1395. اثر بیوچار کود گاوی و تنش رطوبتی بر ویژگی های رشد و کارایی مصرف آب اسفناج در شرایط گلخانه ای. پژوهش آب در کشاورزی، جلد 30، شماره 2، صفحات: 243 تا 259.
  7. Abbasi, M. K., and A. A. Anwar. 2015. Ameliorating effects of biochar derived from poultry manure and white clover residues on soil nutrient status and plant growth promotion-greenhouse experiments. PLoS ONE 10(6): e0131592.
  8. Akhtar, S. S., M. N. Andersen and F. Liu. 2015. Residual effects of biochar on improving growth, physiology and yield of wheat under salt stress. Agricultural Water Management, 158:61–68.
  9. Barker, A.V. and D. V. Pilbeam. 2007. Handbook of Plant Nutrition (1st Ed.), CRC Press, NY, 636 P.
  10. Batooll, A., S. Taj, A. Rashid, A. Khalid, S. Qadeer, A. R. Saleem and M. A. Ghufran. 2015. Potential of soil amendments (Biochar and Gypsum) in increasing water use efficiency of Abelmoschus esculentus L. Moench. Frontiers in Plant Science, 6: 1–13.
  11. Blackwell, P., G. Riethmuller, and M. Collins.  2009. Biochar Application to Soil. In: J. Lehmann and S. Joseph (Eds.). Biochar for Environmental Management: Science and Technology. 3rd Ed, London, Earthscan, 405 p.
  12. Bremner, J. 1996. Nitrogen total. Methods of Soil Analysis. In: D. L. Sparks et al. (Eds). Method of Soil Analysis. Part 3. pp. 1085-1121. Chemical Methods. American Society of Agronomy and Soil Science Society of America, Madison, WI, USA.
  13. Cely, P., G. Gasco, J. Paz-Ferreiro and A. Mendez. 2015. Agronomic properties of biochars from different manure wastes. Journal of Analytical and Applied Pyrolysis, 111: 173–182.
  14. Cheng, C. H., J. Lehmann, and M. H. Engelhard. 2008. Natural oxidation of black carbon in soils: changes in molecular form and surface charge along a climosequence. Geochimica et Cosmochimica Acta, 72: 1598-1610.
  15. Cheng, C. H., J. Lehmann, J. E. Thies, S. D. Burton, and M. H. Engelhard. 2006. Oxidation of black carbon by biotic and abiotic processes. Organic Geochemistry, 37: 1477-1488.
  16. da Silva, L. C., R. J. M. Custodio Nogueira, M. A. da Silva, and M. B. de Albuquerque. 2011. Drought stress and plant nutrition. Plant Stress, 5: 32-41.
  17. Ding, Y., Y. X. Liu, W. X. Wu, D. Z. Shi, M. Yang and Z. K. Zhong. 2010. Evaluation of biochar effects on nitrogen retention and leaching in multi-layered soil columns. Water, Air, and Soil Pollution, 213(1-4): 47-55.
  18. Farrell, M., L. M. Macdonald, G. Butler, I. Chirino-Valle and L. M. Condron. 2014. Biochar and fertiliser applications influence phosphorus fractionation and wheat yield. Biology and Fertility of Soils, 50, 169–178.
  19. Gartler, J., B. Robinson, K. Burton and L. Clucas. 2013. Carbonaceous soil amendments to biofortify crop plants with zinc. Science of the Total Environment, 465, 308–313.
  20. Gaskin, J. W., C. Steiner, K. Harris, K. C. Das and B. Bibens. 2008. Effect of low-temperature pyrolysis conditions on biochar for agricultural use. Transactions of the ASABE. 51(6): 2061-2069.
  21. Gaskin, J. W., R. A. Speir, K. Harris, K. Das, R. D. Lee, L. A. Morris, and D. S. Fisher. 2010. Effect of peanut hull and pine chip biochar on soil nutrients, corn nutrient status, and yield. Agronomy Journal, 102: 623-633.
  22. Glaser, B., L. Haumaier, G. Guggenberger and W. Zech. 2001. The ‘Terra Preta phenomenon: a model for sustainable agriculture in the humid tropics. Naturwissenschaften, 88: 37–41.
  23. Glaser, B., J. Lehmann and W. Zech. 2002. Ameliorating physical and chemical properties of highly weathered soils in the tropics with charcoal a review. Biology and Fertility of Soils, 35(4): 219-230.
  24. Gonzales, P. R., and M. L. Salas.1995. Improvement of the growth, grain yield, and nitrogen, phosphorus, and potassium nutrition of grain corn through weed control. Journal of Plant Nutrition, 18(11): 2313-2324.
  25. Gunes, A., A. Inal, M. B. Taskin, O. Sahin, E. C. Kaya, and A. Atakol. 2014. Effect of phosphorus-enriched biochar and poultry manure on growth and mineral composition of lettuce (Lactuca sativa L. cv.) grown in alkaline soil. Soil Use and Management, 30: 182–188.
  26. Lehmann, J., K. Hanley, A. Enders, C. Hyland and S. Riha. 2013. Nitrogen dynamics following field application of biochar in a temperate North American maize-based production system. Plant and Soil, 365:239–254.
  27. Hernández, H., H. Castillo, D. Ojeda, A. Arras, J. López and E. Sánchez. 2010. Effect of vermicompost and compost on lettuce production. Chilean Journal of Agricultural Research, 70(4): 583-589.
  28. Inal, A., A. Gunes, O. Sahin, M. B. Taskin and E. C. Kaya. 2015. Impacts of biochar and processed poultry manure, applied to a calcareous soil, on the growth of bean and maize. Soil Use and Management, 31: 106–113
  29. Jeffery, S., F. G. A. Verheijen, M. van der Velde and A. C. Bastos. 2011. A quantitative review of the effects of biochar applications to soils on crop productivity using meta-analysis. Agriculture, Ecosystems and Environment, 144, 175–187.
  30. Jin, Y., X. Liang, M. He, Y. Liu, G. Tian and J. Shi. 2016. Manure biochar influence upon soil properties, phosphorus distribution and phosphatase activities: A microcosm incubation study. Chemosphere, 142: 128–135.
  31. Laird, D. A., P. Fleming, D. D. Davis, R. Horton, B. Wang, and D. L. Karlen. 2010. Impact of biochar amendments on the quality of a typical Midwestern agricultural soil. Geoderma, 158: 443-449.
  32. Lehmann, J. 2007. Bio-energy in the black carbon. Frontiers in Ecology and the Environment, 5(7): 381-387.
  33. Liang, B. L., J. Solomon, D. Kinyangi, J. Grossman, J. Oneill and B. Skjemstad. 2006. Black carbon increases cation exchange capacity in soils. Soil Science Society of America Journal, 70: 1719-1730.
  34. Lehmann, J. and S. Joseph. 2009. Biochar for environmental management. In: J. Lehmann and S. Joseph (Eds.). Biochar for Environmental Management: Science and Technology. 3 rd Ed, London, Earthscan, 405 p.
  35. Lehmann, J., J. P. da Silva Jr, C. Steiner, T. Nehls, W. Zech, and B. Glaser. 2003. Nutrient availability and leaching in an archaeological Anthrosol and a Ferralsol of the Central Amazon basin: fertilizer, manure and charcoal amendments. Plant and Soil, 249: 343-357.
  36. Liang, B., J. Lehmann, D. Solomon, J. Kinyangi, J. Grossman, B. O'neill, J. Skjemstad, J. Thies, F. Luizao, and J. Petersen. 2006. Black carbon increases cation exchange capacity in soils. Soil Science Society of America Journal, 70: 1719-1730.
  37. Lindsay, W. L. and W. A. Norvell. 1978. Development of a DTPA soil test for zinc, iron, manganese, and copper. Soil Science Society of America Journal, 42: 421-428.
  38. Liu, T., B. Liu and W. Zhang. 2014. Nutrients and heavy metals in biochar produced by sewage sludge pyrolysis: its application in soil amendment. Polish Journal of Environmental Studies, 23(1): 271-275.
  39. Logan. T. J., L. E. Goins, and B. Jlindsay. 1997. Field assessment of trace element uptake by six vegetables from N-viro soil. Water Environment Research, 69: 28-33.
  40. Luo, Y., Y. Jiao, X. Zhao, G. Li, L. Zhao and H. Meng. 2014. Improvement to maize growth caused by biochars derived from six feedstocks prepared at three different temperatures. Journal of Integrative Agriculture, 13, 533–540.
  41. Marchetti, R. and F. Castelli. 2013. Biochar from swine solids and digestate influence nutrient dynamics and carbon dioxide release in soil. Journal of Environmental Quality, 42: 893-901.
  42. McCormack, S.A., N. Ostle, R. D. Bardgett, D. W. Hopkins and A. J. Vanbergen. 2013. Biochar in bioenergy cropping systems: impacts on soil faunal communities and linked ecosystem processes. GCB Bioenergy, 5, 81–95.
  43. McHenry, M. P. 2009. Agricultural bio-char production, renewable energy generation and farm carbon sequestration in Western Australia: Certainty, uncertainty and risk. Agriculture, Ecosystems & Environment, 129: 1–7.
  44. Miller, W. P., D. C. Martens and L. W. Zelazny. 1986. Effect of sequence in extraction of trace metals from soils. Soil Science Society of America Journal, 50(3): 598-601.
  45. Munns, R., and R. James. 2003. Screening methods for salinity tolerance: A case study with tetraploid wheat. Plant and Soil, 253: 201-218.
  46. Murphy, J. and J. Riley. 1952. A modified single solution method for determination of phosphate uptake by rye. Soil Science Society of America Journal, 48: 31-36.
  47. Nahar, K. and R. Gretzmacher. 2002. Effect of water stress on nutrient uptake, yield and quality of tomato (Lycopersicon esculentum Mill.) under subtropical conditions. Die Bodenkultur, 53 (1): 45-51.
  48. Neble, S., V. Calvert, J. Le Petit and S. Criquet. 2007. Dynamics of phosphatase activities in a cork oak litter (Quercus suber L.) following sewage sludge application. Soil Biology and Biochemistry, 39: 2735 -2742.
  49. Nigussie, A., E. Kissi, M. Misganaw and G. Ambaw. 2012. Effect of biochar application on soil properties and nutrient uptake of lettuces (Lactuca sativa) grown in chromium polluted soils. American-Eurasian Journal of Agriculture and Environmental Science, 12: 369-376.
  50. Novak, J. M., W. J. Busscher, D. L. Laird, M. Ahmedna, D. W. Watts, M. A. S. Niando. 2009. Impact of biochar amendment on fertility of a southeastern coastal plain soil. Soil Science, 174, 105–112.
  51. Olsen, S. R., C. V. Cole, F. S. Watanabe, and L. A. Dean. 1954. Estimation of available phosphorus in soil by extraction with sodium bicarbonate. United States Department of Agriculture. Circular, Washington DC, 939: 1-18.
  52. Parvage, M. M., B. Ulen, J. Eriksson, J. Strock, and H. Kirchmann. 2013. Phosphorus availability in soils amended with wheat residue char. Biology and Fertility of Soils, 49: 245–250.
  53. Sika, M. P. 2012. Effect of biochar on chemistry, nutrient uptake and fertilizer mobility in sandy soil. Thesis presented in agriculture at the University of Stellenbosch. 123 P.
  54. Solomon, D., J. Lehmann, J. Thies, T. Schafer, B. Liang, J. Kinyangi, E. Neves, J. Petersen, F. Luizo and J. Skjemstad. 2007. Molecular signature and sources of biochemical recalcitrance of organic C in Amazonian dark earths. Geochimica et Cosmochimica Acta, 71: 2285-2298.
  55. Song, W. Y.,  Z. B. Zhang, H. B. Shao, X. L. Guo,  H. X. Cao, H. B. Zhao, Z. Y. Fu and X. J. Hu. 2008.  Relationship between calcium decoding elements and plant abiotic-stress resistance. International Journal of Biological Science, 4: 116-125.
  56. Sposito, N. C. 2013. Soil nutrient availability properties of biochar. A Thesis presented to the Faculty of Cal Poly State University, San Luis Obispo.
  57. Uzoma, K., M. Inoue, H. Andry, H. Fujimaki, A. Zahoor, and E. Nishihara. 2011. Effect of cow manure biochar on maize productivity under sandy soil condition. Soil Use and Management, 27: 205-212.
  58.  Van Zwieten, L., S. Kimber, A. Downie, K. Chan, A. Cowie, R. Wainberg, and S. Morris. 2007. Papermill char: benefits to soil health and plant production, Proceedings of the Conference of the International Agrichar Initiative. 30 April-2 May 2007, Terrigal, NSW, Australia.
  59. Vassilev, N., E. Martos, G. Mendes, V. Martos and M. Vassileva. 2013. Biochar of animal origin: a sustainable solution to the global problem of high-grade rock phosphate scarcity? Journal of the Science of Food and Agriculture, 93: 1799-1804.
  60. Verheijen, F. G. A., S. Jeffery, A. C. Bastos, M. van der Velde and I. Diafas. 2010. Biochar application to soils-A critical scientific review of effects on soil properties, processes and functions. Office for the Official Publications of the European Communities, Luxembourg.
  61. Xu, G., J. Sun, H. Shao and S. X. Chang. 2014. Biochar had effects on phosphorus sorption and desorption in three soils with differing acidity. Ecological Engineering, 62: 54–60.
  62. Zhao, X.R., D. Li, J. Kong, and Q.M. Lin. 2014. Does biochar addition influence the change points of soil phosphorus leaching? Journal of Integrative Agriculture, 13: 499–506.