پهنه‌بندی هدایت هیدرولیکی اشباع لایه سطحی خاک با بافت لوم و لوم شنی دشت سیستان

نویسندگان

1 دانشجوی دکتری آبیاری و زهکشی گروه آب دانشگاه زابل

2 دانشیار گروه مهندسی آب دانشگاه زابل

چکیده

هدایت هیدرولیکی اشباع خاک (Ks) یکی از پارامترهای اساسی در مطالعات حرکت آب و املاح در خاک و طراحی پروژوه­های آبیاری و زهکشی است. بنابراین، شناخت الگوی توزیع مکانی آن از اهمیت فراوانی برخوردار می­باشد. هدف از پژوهش حاضر پیش­بینی الگوی پراکنش مکانی Ks در مزرعه تحقیقاتی سد سیستان با استفاده از روش­های میان­یابی بوده است . برای این منظور تعداد 113 آزمایش نفوذ تک حلقه­ای بیرکن در خاک­های مزرعه با فواصل حدود 80 متر انجام گردید. ضریب Ks با استفاده از الگوریتم­های محاسباتی بیرکن شامل BESTslope، BESTintercept و BESTsteady به­دست آمد. متوسط خطای نسبی برازش  برای الگوریتم­های BESTslope و BESTintercept به­ترتیب 19/5% و 35/9 درصد بوده که رضایت بخش است. برای مقایسه دقت تخمین از پارامترهای ضریب تعیین وزنی (ωr2) و خطای استاندارد (SE) استفاده شد. براساس نتایج به­دست آمده، هدایت هیدرولیکی اشباع از همبستگی مکانی متوسط با ساختار غالب نمایی برخوردار بود. همچنین نتایج نشان داد که در بافت لوم و لوم شنی که بافت غالب منطقه مورد مطالعه است و برای هر سه الگوریتم محاسباتی بیرکن، روش لوگ کریجینگ با اختلاف نه چندان زیاد نسبت به سایر روش­های میان­یابی، بیشترین مقدار ωr2 و کمترین مقدار SE و در واقع بیشترین دقت تخمین را داشت. از طرفی دقت تخمین در الگوریتم BESTsteadyکه ساده­ترین فرآیند محاسباتی را در مقایسه با دو الگوریتم دیگر دارد، بیشتر بود. بنابراین طبق نتایج به­دست آمده، روش لوگ کریجینگ نمایی به­عنوان بهترین روش میان­یابی برای تعیین الگوی پراکنش مکانی هدایت هیدرولیکی اشباع خاک براساس مقادیر Ks به­دست آمده از الگوریتم ساده و کاربردی BESTsteady در خاک های لوم و لوم شنی پیشنهاد می­شود.

کلیدواژه‌ها


عنوان مقاله [English]

Mapping Saturated Hydraulic Conductivity of Surface Layer in Loam and Sandy Loam Soils of Sisitan Plain

نویسندگان [English]

  • T. Ahmady 1
  • M. Delbari 2
  • P. Afrasiab 2
1 PhD. student in Irrigation and Drainage, University of Zabol
2 Associate Professor, Department of Water Engineering, University of Zabol
چکیده [English]

Soil saturated hydraulic conductivity (Ks) is one of the main parameters in water and solute transport studies in soil and irrigation and drainage projects designs. So, knowledge about the Ks spatial distribution pattern has great importance. The aim of present study was to predict spatial distribution pattern of Ks in the experimental field of Sistan Dam, Zabol University, using different interpolation methods. For this purpose, a set of 113 single ring Beerkan infiltration experiments were carried out over the study area in a grid of average distance about 80 m. The Ks was obtained through Beerkan calculating algorithms, BESTslope, BESTintercept and BESTsteady. The relative fitting errors were 5.19% and 9.39% for BESTslope and BESTintercept algorithms, respectively, that are satisfactory. The interpolation methods were compared using evaluation criteria such as the weighted determination coefficient (ωr2) and standard error (SE). Based on the results, the spatial correlation of Ks was moderate and it had the exponential structure. The results showed that Log Kriging (LOK) achieved the highest ωr2 and lowest SE values for estimating Ks over the study area with a dominant soil textures of loam and sandy loam. However, the difference between LOK and the other interpolation approaches was not significant. Moreover, among the interpolation methods, BESTsteady algorithm, which had the simplest calculating procedure, had the highest precision in estimation. So, according to the results, LOK with an exponential semivarigram model is suggested as the best interpolation method for predicting the spatial distribution of Ks, based on values obtained from the simple and applicable algorithm, i.e. BESTsteady, in loam and sandy loam soils.

کلیدواژه‌ها [English]

  • Beerkan Infiltration Experiment
  • Calculating algorithms
  • Semivariogram
  • Spatial interpolation
  1. Bagarello, V. Di Prima, S. and Iovino, M. 2014. Comparing alternative algorithms to analyze the Beerkan infiltration experiment. Soil Science Society of America, 78:724–736.
  2. Cambardella, C. Moorman, A. Moorman T.B. Novak, J. M. Parkin, T. B. Karlen, D. L. Turco, R. F. Konopka, A. E.  1994. Field-Scale Variability of Soil Properties in Central Iowa Soil Science. Society American. 58:1501-1511.
  3. Diiwu, J.Y. Rudra, R.P. Dickinson, W.T. and Wall, G.J. 1998. Effect of tillage on the spatial variability of soil water properties. Canadian Agricultural Engineering 40(1): 1-7.
  4. Di Prima, S. Lassabatere, L. Bagarello, V. Iovino, M. and Angulo-Jaramillo, R. 2016. Testing a new automated single ring infiltrometers for Beerkan infiltration experiments. Geoderma, 262: 20–34.
  5. Elrick, D.E. Reynolds,W.D. Baumgartner, Tan, N. K.A. and Bradshaw, K.L.  1987. In-situ measurement of hydraulic properties of soils using the Guelph Permeameter and Guelph Infiltrometer. In Proceedings Third International Symposium on Land Drainage, 13-23. Columbus, Ohio: Ohio State University
  6. Gallichand, J. and Marcotte, D. 1992. Mapping Clay Content for Subsurface drainage in the Nile Delta. Geoderma, 58:165-179.
  7. Ghavidelfar, S. Shamsedin, A. and Melville, B. 2015. Estimation of soil hydraulic properties and their uncertainty through the Beerkan infiltration experiment. Hydrological Process. 29: 3699–3713.
  8. Gee, G.W. and Or, D. 2002. 2.4 Particle-size analysis. In: Dane, J.H., Topp, G.C. (Eds.), Methods of soil analysis. Part 4, Physical methods. : SSSA Book Series. 5. Soil Science Society of America.  Inc. Madison. WI. pp. 255–293.
  9. Goovaerts, P. 1997. Geostatistics for Natural Resources Evaluation Oxford University Press, New York, 496 p., ISBN: 9780195115383
  10. Goovaerts, P. 2000. Geostatistical approaches for incorporating elevation into the spatial interpolation of rainfall. Journal of Hydrology 228(2):113–129
  11. Govindaraju, R.S. Koelliker, J.K. Schwab A.P. and Banks.M.K. 1995. Spatial variability of surface infiltration properties over two fields in the Konza Prairie. Poster presented at the Hazardous Waste Research Conference, Manhattan,
  12. Isaaks, H. and Srivastava, R. M. 1989, An Introduction to Applied Geostatistics, Oxford University Press, New York, 561 p., ISBN 0-19-505012-6, ISBN 0-19-505013-4
  13. Journel, A.G. Huijbregts, C.J. 1978. Mining Geosta­tistics. Academic Press, New York.
  14. Jang, C.S and Liu, C.W. 2004. Geostatistical analysis and conditional simulation for estimating the spatial variability of hydraulic conductivity in the Choushui River alluvial fan, Taiwan, Hydrological Process 18:1333–1350.
  15. Jury, W.A. 1989. Chemical movement through soil. In Vadose Zone Modelling of Organic Pollutants, eds. Hern,S.C. and Melacon, M.S. 135-139. Chelsea, MI: Lewis Publishing Inc
  16. Krause, P. Boyle, DP. and Base, F. 2005. Comparison of different efficiency criteria for hydrological model. Advances in Geosciences. 5:89-97.
  17. Lassabatere, L. Angulo-Jaramillo, R. Soria Ugalde, J.M. Cuenca, R. Braud, I. and Haverkamp, R. 2006. Beerkan estimation of soil transfer parameters through infiltration experiments. Soils Soil Science Society American Journal 70: 521–532
  18. Lloyd, C.D. 2005. Assessing the effect of integrating elevation data into the estimation of monthly precipitation in Great Britain. Journal of Hydrology,308: 128–150
  19. Mubarak, I. Mailhol, J. Angulo-Jaramillo, R. Ruelle, P. Boivin, P. and Khaledian, M. 2009. Temporal variability in soil hydraulic properties under drip irrigation. Geoderma150:158–165.
  20. Mubarak, I. Angulo-Jaramillo, R. Mailhol, JC. Ruelle, P. Khaledian, M. and Vauclin, M. 2010. Spatial analysis of soil surface hydraulic properties: is infiltration method dependent? Agricultural Water Management. 97: 1517–1526
  21. Moustafa, M.M. Yomota, A. 1998. Spatial modeling of soil properties for subsurface drainage projects. Journal of Irrigation and Drainage Engineering, 124(4): 218-228.
  22. Nielson, D.R. Biggar, J.W. and Erh.K.T. 1973. Spatial variability of field measured soil water properties. Hilgardia 42(7):215-259
  23. Saito, H., and P. Goovaerts. 2000. Geostatistical interpolation of positively skewed and censored data in a dioxin contaminated site. Environ. Sci. Technol.34: 4228–4235.
  24. Willardson, L.S. and R.L. Hurst. 1965. Sample size estimated in permeability studies. Journal of Irrigation and Drainage Engineering, ASCE 91:1-9.
  25. Xu X, Kiely, G. and Lewis, G. 2009. Estimation and analysis of soil hydraulic properties through infiltration experiments: comparison of BEST and DL fitting methods. Soil Use and Management. 25:354–361.
  26. Xu, X. Lewis, C. Liu, W. Albertson, J. and Kiely, G. 2012. Analysis of single-ring infiltrometer data for soil hydraulic properties estimation: Comparison of BEST and Wu methods. Agriculture Water Management. 107:34–41.
  27. Yilmaz, D. Lassabatere, L. Angulo-Jaramillo, R. Deneele, D. and Legret, M. 2010. Hydrodynamic characterization of basic oxygen furnace slag through an adapted BEST method. Vadose Zone. 9:107–116.