اثر دو روش کشت کم‌خاک‌ورزی و مرسوم بر نیتروژن و آب مصرفی گندم

نوع مقاله: مقاله پژوهشی

نویسندگان

1 دانشیار بخش تحقیقات خاک و آب مرکز تحقیقات کشاورزی و منابع طبیعی استان فارس، سازمان تحقیقات، آموزش و ترویج کشاورزی، شیراز، ایران

2 دانشیار موسسه تحقیقات خاک و آب، سازمان تحقیقات، آموزش و ترویج کشاورزی، کرج، ایران

3 استادیار بخش تحقیقات خاک و آب مرکز تحقیقات کشاورزی و منابع طبیعی استان فارس، سازمان تحقیقات، آموزش و ترویج کشاورزی، شیراز، ایران

چکیده

به منظور بررسی اثر سامانه‌های کشت مرسوم و کم‌خاک‌ورزی بر میزان نیتروژن و آب مصرفی گندم، با استفاده از طرح بلوک‌های نواری خرد شده و دو سیستم آبیاری بارانی تک شاخه، اثرهای چهار سطح صفر، 90 ، 135 و 180 کیلوگرم نیتروژن و چهار میزان 4610، 4240، 3850 و 3395 متر مکعب آب در هر هکتار در این دو سامانه کشت بررسی گردید. نتایج نشان داد که در هر دو سامانه، با کاهش آب مصرفی تعداد خوشه در واحد سطح، عملکرد دانه و جذب نیتروژن بطور معنی‌داری کاهشیافت. در کشت مرسوم، با کاربرد نیتروژن تا سطح 180 کیلوگرم در هکتار، عملکرد و اجزاء عملکرد دانه و جذب نیتروژن افزایش یافت. اما در کم‌خاک‌ورزی، مقادیر این پارامترها با افزایش نیتروؤن تا 135 کیلوگرم در هکتار افزایش و در سطح 180 کیلوگرم نیتروژن در هکتار، کاهش یافت. نتایج همچنین نشان داد که مقادیر پارامترهای مطالعه شده در ‌خاک‌ورزی مرسوم بالاتر از سامانه کم‌خاک‌ورزی بود، اما بجز تعداد خوشه در واحد سطح و میزان پروتئین دانه، تفاوت معنی­داریبین دو سامانه ‌خاک‌ورزی وجود نداشت. بالاترین کارآیی مصرف آب (85/1 کیلوگرم دانه بازاء هر متر مکعب آب) در هر دو سامانه کشت، از کاربرد توأم 135 کیلوگرم نیتروژن و 3850 متر مکعب آب در هر هکتار به دست آمد اما بیشترین عملکرد دانه در خاک‌ورزی مرسوم (8226 کیلوگرم در هکتار) از کاربرد 4610 متر مکعب آب و 180 کیلوگرم نیتروژن در هر هکتار با کارآیی مصرف آب 79/1 کیلوگرم دانه بهازاء هر متر مکعب آب و در سامانه کم‌خاک‌ورزی بیشترین عملکرد دانه (8378 کیلوگرم در هکتار) از مصرف توأم 3850 متر مکعب آب و 135 کیلوگرم نیتروژن در هر هکتار با کارآیی مصرف آب 85/1 کیلوگرم دانه بهازاء هر متر مکعب آب به دست آمد. به عبارت دیگر، در سامانه کشت کم‌خاک‌ورزی، با مصرف آب و نیتروژن کمتر، عملکردی معادل خاک‌ورزی مرسوم به دست آمد.

کلیدواژه‌ها


عنوان مقاله [English]

Effects of Minimum and Conventional Tillage Systems on Nitrogen and Water Consumption of Wheat

نویسندگان [English]

  • A. Ziaeyan 1
  • F. Moshiri 2
  • G. Zareian 3
1 Associate Professor, Soil and Water Research Department, Fars Agricultural and Natural Resources Research Center, AREEO, Shiraz, Iran
2 Associate Professor, Soil and Water Research Institute, AREEO, Karaj, Iran
3 Assistant Professors,, Soil and Water Research Department, Fars Agricultural and Natural Resources Research Center, AREEO, Shiraz, Iran
چکیده [English]

This research aimed In order to investigated the effects of minimum and conventional tillage systems on the nitrogen and water consumption of wheat., Bby using a split-block design and implementing two single- line- source sprinkler systems, effects of four levels of 0, 90, 135, and 180 kgN.ha-1 as from urea source and four levels of irrigation water (4610, 4240, 3850 and 3395 m3.ha-1), was studied in theseunder conventional and minimum tillage systems, was studied. The results showed that, in both of two tillage systems, by reduceding water consumption, the Nonumber. of spikes. in m-1, grain yield, and wheat nitrogen uptake decreased significantly. In conventional tillage system, grain yield, grain yield components, and nitrogen uptake increased by nitrogen application, until 180 kgN.ha-1 levels; but in minimum tillage system, these parameters increased until 135 kgN.ha-1 and decreased in at 180 kg N.ha-1 level. The results showed that the amounts values of the studied parameters in conventional system were higher than the minimum tillage system, but, but except the No.number of spiklet. in m-1 2 and amounts of grain protein, there were no differencess between the two tillage systems. The results also showed that, in both tillage systems, the heighest water use efficiency (WUE, (1.85 kg.m-3) was obtained from combined application of 135 kgN.ha-1 and 6700 m3.ha-1 irrigation water. but However, the highest grain yield in conventional tillage system (8226 kg.ha-1) was obtained from combined application of 4610 m3.ha-1 of irrigation water and 180 kg.ha-1 nitrogen, with by water use efficiencyWUE of 1.85 kg.m-3. and iIn minimum tillage system, the highest grain yield (8378 kg.ha-1) was obtained from combined application of 3850 m3.ha-1 of irrigation water and 135 kg.ha-1 nitrogen, with by water use efficiencyWUE of 1.79 kg.m-3. In other words, in the minimum tillage system, by using less water and nitrogen, a similar yield similar than to the conventional tillage was obtained.

کلیدواژه‌ها [English]

  • Single line-source irrigation system
  • Water stress
  • Water use efficiency
  1. امام، ی. و م. نیک نژاد. 1390. مقدمه‌ای بر فیزیولوژی عملکرد گیاهان زراعی (ترجمه). جلد دوم. انتشارات دانشگاه شیراز، شیراز، ایران. 594 صفحه.
  2. امامی‌، ع.‌ 1375. روش‌های‌ تجزیة‌ گیاه‌. نشریه‌ فنی‌ شماره‌ 982. موسسة‌ تحقیقات‌ خاک‌ و آب‌، تهران، ایران، 128 صفحه.
  3. زارعی، م.، کاظمینی، ع. ر. و م. ج. بحرانی، 1393. تأثیر سامانه‌های مختلف خاک‌ورزی و تنش آبی بر رشد و عملکرد گندم. نشریه پژوهش‌های زراعی ایران، جلد 12، شماره 9، صفحه‌های 804-793.
  4. سپیده دم س. و م. رمرودی. 1394. تأثیر سامانه‌های خاک‌ورزی و کود نیتروژن بر عملکرد، اجزا عملکرد و پروتئین دانه گندم. تحقیقات کاربردی اکوفیزیولوژی گیاهی، دوره دوم، شماره دوم. صفحه‌های 804-793.
  5. شهسواری، ن. و م. صفاری .1384 .اثر مقدار نیتروژن بر عملکرد و اجزای عملکرد سه رقم گندم در کرمان. پژوهش و سازندگی در زراعت و باغبانی. شماره66. صفحه‌های 82-87.
  6. صفری، ا.، م. ا. آسودار، م. قاسمی نژاد و ع. ر. ابدالی مشهدی. 1392. تأثیر حفظ بقایا، روش‌های مختلف خاک‌ورزی  حفاظتی و کاشت بر خصوصیات فیزیکی خاک و عملکرد گندم. نشریه دانش کشاورزی و تولید پایدار. جلد 23 شماره 2 صفحه‌های 59-49.
  7. علی‌احیایی، م. و ع. ا. بهبهانی‌زاده. 1373. شرح روش‌های تجزیة شیمیایی خاک، جلد 1، نشریه شماره 893. موسسة تحقیقات خاک و آب تهران، ایران، 128 صفحه.
  8. عنایت‌قلی‌زاده، م. ر.، ق. ا. فتحی و م. رزاز. 1390. واکنش ارقام گندم به تنش خشکی و سطوح مختلف نیتروژن در شرایط آب و هوایی خوزستان. مجله علمی ـ پژوهشی اکوفیزیولوژی گیاهان زراعی و علف‌های هرز. شماره 17، 14-1.
  9. ملکوتی، م. ج. و م. ن.، غیبی. 1379. تعیین حد بحرانی عناصر غذایی موثر در خاک، گیاه و آب (چا دوم با بازنگری کامل) در کشور. نشر آموزش کشاورزی سازمان تات، وزارت کشاورزی، کرج، ایران.
  10. مولودی، آ.، ع. عبادی و م. داوری. 1393. تأثیر مصرف نیتروژن بر انتقال مجدد ماده خشک و نیتروژن در جو بهاره تحت تنش کم آبی. نشریه تولید گیاهان زراعی. جلد 7، شماره 4، صفحه‌های 142-132.
  11. Albrizio, R., Todorovic, M., Matic, T. and Stellacci, A. M. 2010. Comparing the interactive effects of water and nitrogen on durum wheat and barley grown in a Mediterranean environment. Field Crops Research 115: 179–190.
  12. Azizian, A., and Sepaskhah, A.R. 2014. Maize response to different water, salinity and nitrogen levels: agronomic behavior. International Journal of Plant Production 8 (1):107-130.
  13. Barbieri, P.A., Echeverría, E.H., Rozas, H.R.S., and Andrade, F.H. 2008. Nitrogen use efficiency in maize as affected by nitrogen availability and row spacing. Agronomy Journal. 100:1094–1100.
  14. Courtney, P. D., Clain, J., and McVay, K. 2008. Nutrient Management in no-till and minimum till system. Montana State University, Extension Publications. Available from http://www.montana.edu/publications
  15. Daba, N.A. 2017. Influence of Nitrogen Fertilizer Application on Grain Yield, Nitrogen Uptake Efficiency, and Nitrogen Use Efficiency of Bread Wheat (Triticum aestivum L.) Cultivars in Eastern Ethiopia. Journal of Agricultural Science. 9(7): 202-216.
  16. Farshadfar, E., Farshadfar, M. and Moradi, F. 2011. Screening Agronomic, Physiological and Metabolite Indicators of Drought Tolerance in Bread Wheat (Triticum Aestivum L). American Journal of Scientific Research 38: 88–96.
  17. Feng, Y., Ning, T., Li, Z., Han, B., Han Li, Y., Sun, T., and Zhang, X. 2014.  Effects of tillage practices and rate of nitrogen fertilization on crop yield and soil carbon and nitrogen. Plant Soil Environment 60(3): 100–104.
  18. Finney, D.M., Eckert, S.E., and Kaye, J.P. 2015. Drivers of nitrogen dynamics in ecologically based agriculture revealed by long-term, high-frequency field measurements. Ecological Applications. 25 (8): 2210–2227.
  19. Gheysari, M., Mirlatifi, S.M., Bannayan, M., Homaee, M., and Hoogenboom G. 2009. Interaction of water and nitrogen on maize grown for silage. Agricultural Water Management 96(5): 809-821.
  20. Hanks, R.J., Keller, J., Rasmussen, V.P., and Wilson, Q.P. 1976. Line source sprinkler for continuous variable irrigation – crop production studies. Soil Science Society American Journal. 40: 426 - 429.
  21. Hatfield, J.L., and J.H. Prueger. 2004. Nitrogen over-use, under-use, and efficiency. Proceedings of the 4thInternational Crop Science Congress, Brisbane, Australia. 26 September-1 October 2004. The Regional Institute Ltd., Gosford, New South Wales, Australia.
  22. Hemmat, A., and I. Eskandari. 2006. Dry land winter wheat response to conservation tillage in a continuous cropping system in northwestern Iran. Soil Tillage Research. 86: 99-109.
  23. Jin, H., Qingjie, W., Hongwen, L., Lijin, L., and Huanwen, G. 2009. Effect of alternative tillage and residue cover on yield and water use efficiency in annual double cropping system in North China Plain. Soil and Tillage Research 104:198-205.
  24. Judith, N., Chantigny, M., Dayegamiye, A., and Laverdiere, M. 2009. Dairy cattle manure improves soil productivity in low residue rotation systems. Agronomy Journal 101:207-214.
  25. Kilic, H., and Yağbasanlar, T. 2010. The effect of drought stress on grain yield, yield components and some quality traits of durum wheat (Triticum turgidum) cultivars. Notulae Botanicae Horti Agrobotanici Cluj-Napoca 38: 164–170.
  26. Kirigwi, F. M., Ginkel Van, M., Trethowan, R., Sears, R.G., Rajaram, S., and Aulsen, G.M. 2004. Evaluation of selection strategies for wheat adaptation across water regimes. Euphytica. 135: 361–371.
  27. Limon-Ortega, A., Sayer, K. D., and Francis, C. A. 2000. Wheat nitrogen use efficiency in a bed planting system in northwest Mexico. Agronomy Journal, 92: 303-308.
  28. Mafakheri, A., Siosemardeh, A., Bahramnejad, B., Struik, P., and Sohrabi, E. 2010. Effect of drought stress on yield, proline and chlorophyll contents in three chickpea cultivars. Australian Journal of Crop Science, 4: 580–585.
  29. Malhi, S., and M. Nyborg. 1992. Placement of urea fertilizer under zero and conventional tillage for barley. Soil & Tillage Research. 23: 193-197.
  30. Mandic, V., Krnjaja, V., Tomic, Z., Bijelic, Z., Simic, A., Muslic, D.R., and Gogic, M. 2015. Nitrogen fertilizer influence on wheat yield and use efficiency under different environmental conditions. Chilean Journal Agriculture Research, 75(1):92-97.
  31. Melaj, M.A., Echeverria, H.E., Lopez, S.C., Studdert, G., Andrade, F., and Barbaro, N.O. 2003. Timing of nitrogen fertilization in wheat under conventional and no-tillage system. Agronomy Journal, 95:1525-1531.
  32. Modhej, A., Naderi, A., Emam, Y., Aynehband, A., and Normohamadi, Gh. 2008. Effects of post-anthesis heat stress and nitrogen levels on grain yield in wheat (T. durum and T. aestivum) genotypes. International Journal of Plant Production 2:257-268.
  33. Mohammadi, Kh. 2012. Effects of Fertilization and Tillage on Soil Biological Parameters. International Conference on Ecological, Environmental and Biological Sciences (ICEEBS'2012) Jan. 7-8, 2012 Dubai.
  34. Parzivand, A., Ghooshchi, F., Momayezi, M., and Tohidimoghadam, M.H. 2011. Effects of zinc spraying and nitrogen fertilizer on yield amd some seed qualitative traits of wheat under drought stress conditions. Journal Crop Production Research. 3: 56-69.
  35. Patil, S.L., and Sheelavantar, M.N. 2006. Soil water conservation and yield of winter sorghum as influenced by tillage, organic materials and nitrogen fertilizer in semi-arid tropical India. Soil and Tillage Research, 89: 246-257.
  36. Rajjala, A., Hakala, K., Makela, P., Muurinen, S., and Peltonen-Sainio, P. 2009. Spring wheat response to timing of water deficit through sink and grain filling capacity. Field Crops Research. 114: 263–271.
  37. Subedi, K. D., Ma, B. L., and Xue, A. G. 2007. Planting date and nitrogen effects on grain yield and protein content of spring wheat. Crop Science. 47: 36-44.