ارزیابی تأثیر کود نانو کلات نیتروژن بر جوانه‌زنی و سبزینه گیاهچه نیشکر با استفاده از تصاویر دیجیتال

نوع مقاله: مقاله پژوهشی

نویسندگان

1 دانشجوی دکتری خاکشناسی، دانشکده کشاورزی و منابع طبیعیواحد اهواز، دانشگاه آزاد اسلامی، اهواز، ایران

2 دانشیار گروه خاکشناسی، دانشکده کشاورزی و منابع طبیعی، واحد اهواز، دانشگاه آزاد اسلامی، اهواز، ایران

3 استاد گروه زهکشی، دانشکده علوم آب، دانشگاه شهید چمران اهواز، ایران

چکیده

این پژوهش با هدف بررسی تأثیر کاربرد کود نانوکلات نیتروژن بر تعدادی از ویژگی‌های گیاه نیشکر (رقم CP69-1062) و امکان‌سنجی استفاده از روش تجزیه و تحلیل تصویر دیجیتال برای تعیین درصد پوشش سبز گیاهچه نیشکر در سال 1396 در کشت و صنعت میرزاکوچک‌خان واقع در 65 کیلومتری جنوب غربی اهواز اجرا شد.  قالب آماری آزمایش بلوک‌های کامل تصادفی (RCB) با پنج تیمار و سه تکرار بود. سطح هر کرت 2 مترمربع انتخاب شد. در روز پانزدهم بعد از کشت، تیمارهای آزمایش در مزرعه اجرا شدند که شامل محلول‌پاشی غلظت‌های متفاوت از کود اوره (46 درصد نیتروژن) و نانو کلات نیتروژن (17 درصد نیتروژن) در سطح کرت‌های آزمایشی بود (تیمار T0= بدون محلول‌پاشی (شاهد)، تیمار U1= محلول‌پاشی اوره (غلظت 2/0 درصد)، تیمار U2= محلول‌پاشی اوره (غلظت 3/0 درصد)، تیمار N1= محلول‌پاشی نانو کلات نیتروژن (غلظت 4/0 درصد) و تیمار N2= محلول‌پاشی نانو کلات نیتروژن (غلظت 6/0 درصد). شمارش هفتگی جوانه‌ها و نمونه‌برداری از گیاهچه‌ها (برای تعیین درصد نیتروژن برگ)  به مدت 12 هفته ادامه یافت. در هر کرت آزمایشی عکس‌های دیجیتال به صورت هفتگی تهیه و با استفاده از نرم‌افزار Canopeo درصد پوشش گیاهی تعیین شد. بررسی‌ها نشان داد تیمارهای آزمایشی بر ارتفاع گیاهچه‌ها تأثیر معناداری نداشتند ولی بر درصد جوانه‌زنی (p ≤ 0.05)، درصد نیتروژن برگ و پوشش گیاهی گیاهچه‌ها (p ≤ 0.01) تأثیرگذار بودند. مقایسه میانگین درصد پوشش گیاهی گیاهچه‌ها نشان دهنده اختلاف معناداری بین همه تیمارهای کودی نسبت به تیمار شاهد بود. بین غلظت‌های متفاوت اوره (تیمارهای U1 و U2) با محلول‌پاشی نانو کلات نیتروژن (تیمارهای N1 و N2) اختلاف معناداری دیده شد (p ≤ 0.01). همچنین مقایسه میانگین‌ها با آزمون دانکن نشان داد که میانگین تعداد جوانه‌زنی، درصد نیتروژن برگ و پوشش گیاهی در تیمار N2 بیشترین مقدار است. همبستگی معناداری بین جوانه‌زنی هفتگی قلمه‌های نیشکر با پوشش گیاهی گیاهچه‌ها (خروجی نرم‌افزار) مشاهده شد (R2 = 90.67%). 

کلیدواژه‌ها


عنوان مقاله [English]

Evaluation of the Effect of Nano-Nitrogen Chelate Fertilizer on Germination and Green Cover of Sugarcane Seedlings by Digital Images

نویسندگان [English]

  • M. Alimohammadi 1
  • E. Panahpour 2
  • A. A. Nseri 3
1 PhD student of Soil Science, Faculty of Agriculture and Natural Resources, Ahvaz Branch, Islamic Azad University, Ahvaz, Ira
2 Associate Professor, Dept. of Soil Science, Faculty of Agriculture and Natural Resources, Ahvaz Branch, Islamic Azad University, Ahvaz, Iran
3 Professor, Dept. of Drainage, Faculty of Water Sciences, Shahid Chamran University, Ahvaz, Iran
چکیده [English]

The purpose of the study was to investigate the effect of nano-nitrogen chelate fertilizer application on a number of sugarcane characteristics (cultivar CP69-1062) and the feasibility of using digital image analysis method to determine the percentage of sugarcane seedlings green cover. The research was conducted at Mirza Kuchak Khan Aagro-industry Corporation located 65 km southwest of Ahwaz, Iran, in 2017.Statistical design was randomized complete block with five treatments and three replications. On the 15th day after cultivation, treatments were carried out in the field and included spraying different concentrations of urea fertilizer and nano-nitrogen chelate: T0= without fertilizer spraying (control), U1= urea spraying (concentration 0.2%), U2= urea spraying (concentration 0.3%), N1= nano-nitrogen chelate spraying (concentration 0.4%), and N2= nano-nitrogen chelate spraying (concentration 0.6%).  Counts of buds and seedling sampling (to determine leaf nitrogen percentage) continued weekly for 12 weeks. In each experimental plot, digital photos were taken weekly and the green vegetation cover in these images was determined by Canopeo software. The results showed that experimental treatments did not have significant effect on seedling height, but had significant effects on germination percentage (p ≤ 0.05), leaf nitrogen, and seedling vegetation (p ≤ 0.01). Comparison of average vegetation percentage of seedlings by Duncan method showed a significant difference between all treatments compared to the control. Comparison of average vegetation percentage of seedlings showed significant differences (p ≤ 0.01) between all treatments compared to the control. There was significant difference between U1 and U2 treatments with N1 and N2 treatments. Also, the highest mean for germination number, leaf nitrogen content, and vegetation percentage was observed in N2 treatment. Significant correlation (R2 = 90.67%) was observed between weekly germination of sugarcane with green vegetation of seedlings, which can be used for grading sugarcane cultivation.

کلیدواژه‌ها [English]

  • Urea fertilizer
  • Canopeo software
  • Fertilizer spraying
  1. صادقی‌پور مروی، م. 1389. راندمان مصرف کود در ایران. اولین کنگره چالش­های کود در ایران: نیم قرن مصرف کود10 تا 12 اسفند ماه. تهران.
  2. عباسی، ع.، ع. م. لیاقت و ف. عباسی. 1391. بررسی آبشویی عمقی نیترات تحت شرایط کود-آبیاری جویچه‌ای ذرت. مجله آب و خاک (علوم و صنایع کشاورزی). جلد26، شماره 4، صفحه‌های 842 تا 853.
  3. عبداللهی، ل. 1388. بازنگری در روش­های مدیریت آبیاری و کوددهی نیشکر با استفاده از تجربیات خارجی و مدل‌های گیاهی. مجله علمی ترویجی نیشکر. سال ششم. شماره 10. صفحه‌های 33 تا 37.
  4. مهندسین مشاور یکم، تهران 1369. مطالعات اولیه آبیاری و زهکشی، کشت و صنعت­های امیرکبیر و میرزاکوچک خان.
  5. Agrawal, S. and P. Rathore. 2014. Nanotechnology. Pros and cons to agriculture: A review. Intl. Appl. Sci. 3:43–55.
  6. Benzon, H. R. L., M. R. U. Rubenecia and S.C. Lee. 2015. Nano-fertilizer affects the growth, development and chemical properties of wheat. International Journal of Agronomy and Agricultural Research, 7, 105-117.
  7. Cui, H., C. Sun, Q. Liu, J. Jiang and W. Gue. 2006. Applications of nanotechnology in agrochemical formulation, perspectives, challenges and strategies. Pages 1-6. Institute of Environment and Sustainable Development in Agriculture, Chinese Academy of Agricultural Sciences, Beijing. China.
  8. Davarpanah, S., A. Tehrani and G. Davarynejad. 2017. Effects of foliar nano-nitrogen and Urea fertilizer on the physical and chemical properties of Pomegranate (punica granatum cv. Ardestani) fruits. Hortscience 52(2): 288-294.
  9. Food and Agriculture Organization of the United Nations (FAO). 2016. World fertilizer trends and outlook to 2019. Rome.
  10. Ghasemi, M., G. Normokamadi, H. Madani, H. Heidari, H. R. Mobasser. 2017. Two Iranian Rice Cultivars’ Response to Nitrogen and Nano-Fertilizer. Open journal of Ecology, 7, 591-631. doi: 10.4236/ oje. 2017.710040.
  11. Johnson, A. 2006. Agriculture and nanotechnology. Ward and Dutta, University of Wisconsin-Madison.
  12. Joseph, T. and M. Morrison. 2006. Nanotechnology in Agriculture and Food Institute of Nanotechnology. A Nanoforum report, retrieved from http://www. nanoforum.org/dateien/temp/ nanotechnology.
  13. Junrungrean, S. P. Limtong, K. Wattanaprapat and T. Patsarayeangyong. 2002. Effect of Zeolite and chemical fertilizer on the change of physical and chemical properties Latya soil series for sugarcane. 17th WCSS, 14-21 August 2002, Thailand. 1897; 1-7.
  14. Laamrani, A., R. P. Lara, A. A. Berg, D. Brason and P. Joosse. 2018. Using a mobile device "App" and proximal remote sensing technologies to assess soil cover fractions on agricultural fields. Sensors 18(3):708. DOI: 10.3390/s18030708.
  15. Liang, L., M.D. Schwartz and S. Fei. 2012. Photographic assessment of temperate forest understory phenology in relation to springtime meteorological drivers. Int. J. Biometeorol. 56:343–355. doi: 10.1007/ s00484-011-0438-1
  16. Liu, R. and R. Lal, 2015. Potentials of engineered nanoparticles as fertilizers for increasing agronomic productions. A review. Science of the total Environment, 514, 131-139. DOI:10.1016/j.scitotenv.2015.01.104
  17. Mailhol, J. C., P. Ruelle and I. Nemeth. 2001. Impact of fertilization practices on nitrogen leaching under irrigation. Irrigation Science, 20, 139-147.
  18. Manikandan, A. and K. S. Subramanian. 2016. Evaluation of Zeolite Based Nitrogen Nano-fertilizers on Maize Growth, Yield and Quality on Inceptisols and Alfisols. International Journal of Plant and Soil Science, 9(4): 1-9. ISSN: 2370-7035.
  19. Monreal, C. M. 2010. Nano-fertilizers for increased N and P use efficiencies by crops. Pages 12-13. In: Monreal Summary of Information Currently Provided to MRI Concerning Applications for Round 5 of the Ontario Research Fund- Research Excellence Program.
  20. Mosier, A. R., J. K. Syers and J. R. Freney. 2004. Agriculture and the Nitrogen Cycle: Assessing the Impacts of Fertilizer Use on Food Production and the environment. Washington DC, Island Press, USA.
  21. Park, M. C., Y. Kim and D. H. Lee. 2004. Intercalation of magnesium-urea complex into swelling clay. Journal of Physics and Chemistry of Solids 65 (2-3): 409–412.
  22. Rose, H., L. Benzon, M. Rosna, U. Rubenecia, V. U. Ultra, J. Sang and C. Lee. 2015. Nano-fertilizer affects the growth, development and chemical properties of rice. International journal of Agronomy and Agricultural Research (IJAAR). Vol, 7. No. 1, p. 105-117. ISSN online: 2225-3610.
  23. Sheldrick, W. F., J. K. Syers and J. Lingard. 2002. A conceptual model for conducting nutrient audits at national, regional, and global scales. Nutrient Cycling in Agroecosystems. 62: 61-72.
  24. Suppan, S. 2013. Nanomaterials in soil: Our future food chain? The institute of agriculture and trade policy, Minneapolis, MN.
  25. Yung, S. S., S. C. Choi, R. R. Silva, J. W. Kang and C. Kim. 2017. Case study: Estimation of sorghum biomass using digital image analysis with Canopeo. Biomass and Bioenergy.