اثرات تنش شوری آب، کود فسفاتی و آلودگی کادمیم بر شکل‌های مختلف کادمیم در خاک زیر کشت توتون

نوع مقاله : مقاله پژوهشی

نویسندگان

1 دکترای علوم خاک، گروه مهندسی علوم خاک، دانشکده کشاورزی، دانشگاه لرستان

2 دانشیار، گروه مهندسی علوم خاک، دانشکده کشاورزی، دانشگاه لرستان

3 دانشیار، گروه مهندسی زراعت و اصلاح نباتات، دانشکده کشاورزی، دانشگاه لرستان

چکیده

کادمیم جذب شده در بدن منشا بسیاری از سرطانهای شناخته شده­ی امروزی است. جذب کادمیم از طریق تنفس دود توتون بسیار بیشتر از آشامیدن آب و خوردن غذای آلوده به کادمیم است. این پژوهش به‌­ منظور بررسی اثر شوری آب آبیاری، کود سوپر فسفات تریپل و آلودگی کادمیم خاک بر غلظت کادمیم در خاکستر، دود توتون و سرنوشت کادمیم در بخش­های مختلف خاک انجام شد. آزمایش با سه عامل شوری آب آبیاری (صفر، 20 و 40 میلی مولار NaCl)، کود سوپر فسفات تریپل (صفر و 5/1 گرم بر کیلوگرم خاک) و آلودگی کادمیم اضافه شده به خاک (صفر و 12 میلی­گرم بر کیلوگرم خاک) به‌صورت فاکتوریل در قالب طرح کاملاً تصادفی با چهار تکرار انجام شد. نتایج نشان داد، بیشترین سهم غلظتی کادمیم در خاک آلوده شده به کادمیم، در بخش کربناتی با میانگین کل 84/6 میلی‌گرم بر کیلوگرم و کمترین غلظت کادمیم در بخش اکسید های آهن با میانگین کل 4/0 میلی­گرم بر کیلوگرم مشاهده گردید. کاربرد سوپرفسفات تریپل در خاک آلوده به کادمیم، در شوری صفر، 20 و 40 میلی مولار به ترتیب باعث افزایش غلظت کادمیم خاکستر توتون به مقدار 47/1%،89/15% و 80/29 درصد و غلظت کادمیم دود به مقدار 20/23%، 30/23% و 18 درصد نسبت به تیمار شاهد شد. با افزایش سطوح شوری آب آبیاری در خاک­های آلوده به کادمیم، غلظت کادمیم محلول+ تبادلی در شوری 20 و 40 میلی مولار، به طور میانگین و به ترتیب 15/22% و 42 درصد افزایش نشان داد که این افزایش غلظت در سطح 5 درصد آماری معنی­دار بود. کاربرد کود سوپر فسفات تریپل در خاک­های آلوده به کادمیم و در سطوح شوری 20 و 40 میلی مولار، به ترتیب  سبب کاهش 65/14% و 12 درصدی غلظت کادمیم محلول+تبادلی نسبت به شاهد شد. برهمکنش شوری آب آبیاری و کود فسفاتی اثر فزاینده­ای بر غلظت کادمیم خاکستر و دود توتون داشت.

کلیدواژه‌ها


عنوان مقاله [English]

Effect of Salinity Stress, Phosphate Fertilizer, and Cadmium Contamination on Cadmium Fractions in Tobacco Cultivated Soil

نویسندگان [English]

  • A. Moslehi 1
  • M. Feizian 2
  • H. R. Eisvand 3
1 PhD of Soil Science, Department of Soil Science, Faculty of Agriculture, Lorestan University, Iran
2 Associate Professor, Department of Soil Science, Faculty of Agriculture, Lorestan University, Iran
3 Associate Professor, Lorestan University. Department of Agronomy and Plant Breeding, Faculty of Agriculture, Lorestan University, Iran
چکیده [English]

Absorbed cadmium (Cd) in the body is the source of many known cancers. The absorption of Cd through tobacco smoke inhalation is much greater than drinking and eating Cd contaminated food. This research was carried out to investigate the effect of irrigation salinity, TSP, and Cd contamination on the concentration of Cd in the ash, tobacco smoke, and the fate of Cd in the different soil fractions. The experiment was done with three factors of irrigation salinity (0, 20, and 40 mM NaCl), TSP (0 and 1.5 g. kg-1 soil), and contamination of Cd added to the soil (0 and 12 mg.kg-1 soil) by factorial arrangement in a completely randomized design with four replications. The results showed that the highest concentration of Cd in the Cd contaminated soil was observed in carbonate fraction with a total average of 6.84 mg.kg-1, and the lowest Cd concentration was observed in the iron oxide fraction with a total average of 0.4 mg.kg-1. Application of TSP in the Cd contaminated soil in salinity of 0, 20, and 40 mM increased the concentration of Cd in tobacco ash by 1.47%, 15.98%, and 29.87 percent, and the concentration of Cd in smoke increased by 23.20%, 23.30%, and 18%, respectively, compared to the control treatment. By increasing the salinity levels in Cd contaminated soils, Cd concentration of solution+exchangeable fraction in 20 and 40 Mm salinity, was increased with an average of 22.15% and 42 percent, respectively. This increase was significant at 5% level. Application of TSP in Cd contaminated soils and at levels of 20 and 40 mM salinity resulted in a decrease of 14.65% and 12% in solution + exchange Cd concentration compared to the control. The interaction of irrigation salinity with phosphate fertilizer had a synergistic effect on the concentration of Cd in ash and tobacco smoke.

کلیدواژه‌ها [English]

  • Sequential extraction
  • Soluble+exchangeable Cd
  • Cd in tobacco smoke
  • Triple superphosphate
  1. خانمیرزایی، ع.، بازرگان، ک.، معزی، ع. و شهبازی، ک. 1391. رابطه بین شکل­های شیمیایی کادمیم خاک و غلظت آن در دانه گندم در برخی از خاک­های استان خوزستان. مجله پژوهش­های خاک (علوم آب و خاک). 26. شماره چهارم ( الف)،357-347.
  2. خوش گفتار، ا.ح.، شریعتمداری، ح. و کریمیان، ن. 1382. اثرهای شوری آب آبیاری و کاربرد روی بر حلالیت کادمیم خاک و غلظت آن در گندم. مجله علوم و فنون کشاورزی و منابع طبیعی،4: 59-53.
  3. رجایی، م.، و کریمیان، ن.1386. اثر کادمیوم اضافه شده و زمان خواباندن بر شکل­های شیمیایی کادمیم در دو گروه بافتی خاک. مجله علوم و فنون کشاورزی و منابع طبیعی، سال یازدهم شماره اول (الف)، 108-97.
  4. صدرالزمانی، ک.، سرمد، ج.، زواره، م و مشتاقی، م.1393. اثر غلظت های مختلف کلر آب آبیاری بر عملکرد و شاخص­های رشدگیاه توتون. مجله فرآیند و کارکرد گیاهی، جلد 3، شماره 9، 132-123.
  5. Application Bulletin 314 e. Determination of total phosphate in phosphoric acid and phosphate fertilizers with 859 Titrotherm. Page1-4. Metrohem.
  6. Ashraf, W. M. 2012. Levels of Heavy Metals in Popular Cigarette Brands and Exposure to These Metals via Smoking. The Scientific World Journal. Volume 2012, 1-5. doi:10.1100/2012/729430.
  7. Bolan, N.S., Adriano, B.C. and Mani, P.A. 2003. Immobilization and Phytoavailability of Cadmium in variable charge soils. Plant and Soil. 251:178-198.
  8. Caruso, R.V., O’Connor, R.J., Stephens, W.E., Cummings, K.M. and Fong, G.T. 2014. Toxic metal concentrations in cigarettes obtained from U.S. smokers in 2009: results from the International Tobacco Control (ITC) United States survey cohort, Int. J. Environ. Res. Publ. Health 11: 202–217.
  9. Davis, R. D. 1984. Cadmium—a complex environmental problem. Part II. Cadmium in sledges used as fertilizer. Experientia 40; 117–126.
  10. Gee, G. W. and Bauder, J. W. 1986. Particle size analysis, hydrometer method. P.404-408. In A. Klute et al.(eds) Methods of soil analysis, part1. 3rd Ed. Am. Soc. Agron. Madison. WI.
  11. Guo, J., Leia, M., Yanga, J., Yanga, J., Wana, X., Chena, T., Zhoua, X. Gua, S. and Guo, G. 2017. Effect of fertilizers on the Cd uptake of two sedum species (Sedumspectabile Boreau and Sedum aizoon L.) as potential Cd accumulators. Ecological Engineering 106: 409–414.
  12. Helal, H. M., Upenov, A. and Issa, G. J. 1999. Growth and uptake of Cd and Zn by Leucaena LeucocepHala in reclaimed soil as affected by NaCl salinity. J. Plant Nutr. Soil Sci.162: 589-592.
  13. Hu, Y., Vanhaecke, F., Moens, L., Dams, R., del Castilho, P., and Japenga, J. 1998. Determination of the aqua regia soluble content of rare earth elements in fertilizer, animal fodder phosphate and manure samples using inductively coupled plasma mass spectrometry.Anal. Chim. Acta. 373: 95-105.
  14. Kirkham, M.B. 2000. EDTA-facilitated phytoremediation of soil with heavy metals from sewage sludge. Int. J. Phytoremediat. 2, 159–172.
  15. Li, Q.S., Chen, X.J., Luo, X., Cui, Z.H., Shi, L., Wang, L.L. and Liu, Y.N. 2012. Phytoavailability of heavy metals in tidal flat soils after fresh water leaching. Ecotoxicol. Environ. Saf. 79:22–27.
  16. Lindsay, W.L. and Norvell, W.A. 1987. Development of a DTPA soil test for zinc, iron,manganese, and copper. Soil Sci. Soc. Am. J. 42: 421-428.
  17. Liu, H., Wang, H., Ma, Y., Wang, H., and Shi Y. 2016. Role of transpiration and metabolism in translocation and accumulation of Cd in tobacco plants (Nicotiana tobacco). Chemosphere 144:1960–1965.
  18. Liu, Z., Ge, H., Li, C., Zhao, Z., Song, F. and Hu, S. 2015. Enhanced Phytoextraction of Heavy Metals from Contaminated Soil by Plant Co-Cropping Associated with PGPR. Water Air Soil Pollut: 226:29.
  19. Marano, K.M., Naufal, Z.S., Kathman, S.J., Bodnar, J.A., Borgerding, M.F., Garner, C.D. and Wilson, C.L.2012. Cadmium exposure and tobacco consumption: biomarkers and risk assessment. Regul. Toxicol. Pharmacol. 64: 243–252.
  20. McLaughlin, M. J., Palmer, L. T., Tiller, K. G., Beech, T. A. and Smart, M. K. 1994. soil salinity causes elevated cadmium concentrations in field-grown potato tubers. J. Environ. Qual.23: 1013–1018.
  21. McLaughlin, M. J., Tiller, K. G., Naidu, R. and Stevens, D. P. 1996. Review: the behavior and environmental impact of contaminants in fertilizers. Aust. J. Soil Res. 34:1–54.
  22. Nelson, R. E. 1982. Carbonate and gypsum. In: Page AL(ed) Method of soil analysis. Part2, 2nd ed. Agron Monogr.9. ASA and SSSA, Madison:181-197.
  23. Norvell, W.A., Wu, J., Hopkins, D.G. and Welch, R.M. 2007. Association of cadmium in durum wheat grain with soil chloride and chelate-extractable soil cadmium. Soil Sci. Soc. Am. J. 64:2162–2168.
  24. Olsen., S. R., Cole, C. V., Watanabe, F. S. and Dean, L. A. 1954. Estimation of available phosphorus in soil by extraction with sodium bicarbonate. USDA. Circ.939. U.S. Gov. Print office, Washington D.C.
  25. Pappas, R.S. 2011. Toxic elements in tobacco and in cigarette smoke: inflammation and sensitization Metalloids.3:1181–1198.
  26. Peters, R.W. 1999. Chelant extraction of heavy metals from contaminated soils. Journal of Hazardous Materials 66,151–210.
  27. Piade, J.J., Jaccard, G., Dolka, C., Belushkin, M. and Wajrock, S. 2015. Differences in cadmium transfer from tobacco to cigarette smoke, compared to arsenic or lead. Toxicology Reports 2:12–26.
  28. Pinto, E., Cruz, M., Ramos, P., Santos, A. and Almeida, A. 2017. Metals transfer from tobacco to cigarette smoke: Evidences in smokers’ lung tissue. Journal of Hazardous Materials 325: 31–35.
  29. Renella, G., Adamo, P., Bianco, M. R., Landi, L., Violante, P. and Nannipieri, P. 2004. Availability and speciation of cadmium added to a calcareous soil under various managements. European Journal of Soil Science, 55, 123–133.
  30. Rhoades, J. D. 1996. Salinity: Electrical conductivity and total dissolved solids. P.417-436. in D.  L. Sparks et al. (ed.) Method of soil analysis. PartIII. 3rd Ed. Am. Soc. Agron., Medison. WI.
  31. Roberts, T.L. 2014. Cadmium and Phosphorous Fertilizers: The Issues and the Science. Procedia Engineering 83:52 – 59.
  32. Safari Sinegani, A.A. and Jafari Monsef, M. 2016. Chemical speciation and bioavailability of cadmium in the temperate and semiarid soils treated with wheat residue. Environ Sci Pollut Res 23:9750–9758.
  33. Sato, J. H., Célio de Figueiredo, C., Marchão, R. L., Madari, B. E., Benedito, L. E. C., Busato, J. G. and Mendes de Souza, D. 2014. Methods of soil organic carbon determination in Brazilian savannah soils. Sci. Agric. v.71, (4)302-308.
  34. Seshadri, B., Bolan, N.S., Choppala, G., Kunhikrishnan, A., Sanderson, P., Wang, H., Currie, L.D., Tsang, D. C.W., Ok, Y.S. and Kim, G. 2017. Potential value of phosphate compounds in enhancing immobilization and reducing bioavailability of mixed heavy metal contaminants in shooting range soil. Chemosphere 184:197-206.
  35. Singh, J. P., Karwasra, S. P. S., and Singh, M. 1988. Distribution and forms of copper, iron, manganese and zinc in calcareous soils of India. Soil Sci. 146(5):359-366.
  36. Sumner, M. E. and Miller, W. P. 1996. Cation exchange capacity and exchangeable coefficients. P.1201-1229. In D. Ed. Am. Soc. Agron., Medison, WI.
  37. Suwa, R., Nguyen, N. T., Saneoka, H., Moghaib, R., Fujita, K. 2006. Effect of salinity stress on photosynthesis and vegetative sink in tobacco plants. Soil Science and Plant Nutrition. 52, 243–250.
  38. Thawornchaisit, U. and Polprasert, C. 2009. Evaluation of phosphate fertilizers for the stabilization of cadmium in highly contaminated soils. Journal of Hazardous Materials 165:1109–1113.
  39. Thomas, G. W. 1996. Soil pH and soil activity. P. 475-490. In D.L. Sparks et al. (ed.) Method of soil analysis. PartIII. 3rd Ed. Am. Soc. Agron. Medison WI.
  40. United Nations Environment Program Chemicals Branch, DTIE. 2010. Final review of scientific information on cadmium –Version of December 2010.
  41. Usman, A.R.A., Kuzyakov, Y. and Stahr, K. 2005. Effect of immobilizing substances and salinity on heavy metals availability to wheat grown on sewage sludge contaminated soil. Soil Sediment Contam. 14: 329–344.
  42. Waterlot, C., Pruvot, C., Marot, F., and Douay, F. 2017. Impact of a Phosphate Amendment on the Environmental Availability and Phytoavailability of Cd and Pb in Moderately and Highly Carbonated Kitchen Garden Soils. Pedosphere 27(3): 588–605.
  43. Weggler-Beaton, K., McLaughlin, M.J. and Graham, R.D. 2004. Effect of Chloride in soil solution on the plant availability of biosolid-borne Cadmium. J. Environ. Qual. 33: 496–504.
  44. Welch, R. M. and Norvell W. A. 1999. Mechanisms of cadmium uptake, translocation and deposition in plants. In “Cadmium in Soils and Plants” (M. J. McLaughlin and B. R. Singh, Eds.), pp. 125–150. Kluwer Academic Publishers, Dordrecht.
  45. World Health Organization (WHO). 2010. Exposure to Cadmium: A Major Public Health Concern. World Health Organization http://www.who.int/ipcs/features/cadmium.pdf.