اثر مقادیر بیوچار و نیکل بر غلظت نیکل و برخی عناصر کم مصرف در ذرت

نوع مقاله : مقاله پژوهشی

نویسندگان

1 دانش‌آموخته دکتری گروه علوم خاک، دانشکده کشاورزی دانشگاه شهید چمران اهواز

2 دانشیار گروه علوم خاک، دانشکده کشاورزی، دانشگاه شهید چمران اهواز

چکیده

بیوچار یک ماده جاذب می‌باشد که قادر به کاهش قابلیت دسترسی فلزات سنگین می‌باشد. برایارزیابی اثر کاربرد بیوچار، نیکل و برهمکنش آنها بر رشد و غلظت نیکل و برخی عناصر کم مصرف در اندام هوایی ذرت در یک خاک آهکی،آزمایشی در شرایط گلخانه به صورت فاکتوریل در قالب طرح پایه کاملاً تصادفی انجام شد. تیمارها شامل سه سطح بیوچار (صفر، 2 و 4 درصد وزنی) و سه سطح نیکل (صفر، 50 و100 میلی‌گرم نیکل بر کیلوگرم خاک به صورت سولفات نیکل) در سه تکرار بود. نتایج نشان داد که مصرف بیوچار نسبت به شاهد به طور معنی‌داری وزن خشک اندام هوایی ذرت، درجه سبزی و شاخص سطح برگ را افزایش داد اما مصرف نیکل تأثیر معنی‌داری بر این پارامترها نداشت همچنین مصرف بیوچار، غلظت نیکل را به طور معنی‌داری (33 درصد) در اندام هوایی گیاه کاهش داد. با افزودن غلظت‌های مختلف نیکل به خاک، غلظت این عنصر در اندام هوایی ذرت افزایش یافت. غلظت روی، منگنز و آهن دراندام هوایی ذرت تحت تأثیر کاربرد بیوچار به طور معنی‌داری کاهش یافت. کاربرد سطوح مختلف نیکل، کاهش غلظت آهن و منگنز در اندام هوایی گیاه را به دنبال داشت. با توجه به نقش مثبت بیوچار در افزایش وزن خشک، شاخص سطح برگ، قرائت کلروفیل­متر و همچنین کاهش غلظت نیکل در اندام هوایی ذرت، گمان می رود که در خاک‌های آلوده به فلزات سنگین می‌توان از بیوچار استفاده نمود. 

کلیدواژه‌ها


عنوان مقاله [English]

Effect of Biochar and Nickel Levels on Concentration of Nickel and Some Micronutrients in Corn

نویسندگان [English]

  • T. Rahimi 1
  • A. Moezzi 2
  • S. Hojatti 2
1 Graduated PhD Student, Dept. of Soil Science, Faculty of Agriculture, Shahid Chamran University of Ahvaz
2 Associate Professor, Dept. of Soil Science, Faculty of Agriculture, Shahid Chamran University of Ahvaz
چکیده [English]

Biochar is an absorbent material that can reduce the availability of heavy metals. A greenhouse experiment was carried out in factorial arrangement using completely randomized design to examine the influence of biochar, nickel (Ni) and their interaction on the growth and concentration of Ni and some micronutrients in corn grown on a calcareous soil. Treatments consisted of three biochar levels (0, 2, and 4 % w/w) and three Ni levels (0, 50 and 100 mg/kg soil as nickel sulfate) in three replicates. The results indicated that biochar significantly increased corn dry weight, chlorophyll index, and LAI. However, nickel application had no significant effect on the dry weight of corn. Biochar application significantly decreased Ni concentration in corn aerial part by 33%. Increasing Ni levels increased concentration of this element in corn shoot. Zinc, Mn, and Fe concentration significantly decreased with biochar application. Ni application decreased Fe and Mn concentration in corn. Considering the positive role of biochar on dry weight, chlorophyll greenness, and LAI, and decreasing Ni concentration in corn aerial part, it can be suggested that biochar application might be useful in soils contaminated with Ni.

کلیدواژه‌ها [English]

  • Heavy metal
  • organic amendments
  • Nickel contamination
  1. افراسیابی، ب.، ا. ادهمی، و ا. اولیایی. 1396. ﺗﺄثیر دﻣﺎ بر ﺑﻴﻮﭼﺎرﻫﺎی ﺗﻮﻟﻴﺪ ﺷﺪه در دماﻫﺎی ﻣﺨﺘﻠﻒ ﺑﺮ ﻗﺎﺑﻠﻴﺖ ﺟﺬب ﻛﺎدﻣﻴﻢ ﻳﻚ ﺧﺎک آﻫﻜﻲ در ﺷﺮاﻳﻂ رﻃﻮﺑﺘﻲ ﻣﺨﺘﻠﻒ در ﻃﻲ زﻣﺎن. ﻧﺸﺮﻳﻪ ﺧﺎک آب و خاک. 3 (30) :821-812.
  2. رجبی، ح.1393. اثر بیوچار تفاله پسته، لجن فاضلاب، و کود شیمیایی برزیست فراهمی و جذب نیتروژن و فسفر بوسیله اسفناج. پایان نامه کارشناسی ارشد، بخش علوم خاک، دانشگاه شیراز.
  3. زلفی باوریانی، م.، ع. م. رونقی، ن. کریمیان.، ر. قاسمی و ج. یثربی. 1395. ﺍﺛﺮ ﺑﻴﻮﭼﺎﺭ ﺗﻬﻴﻪ ﺷﺪﻩ ﺍﺯ ﮐﻮﺩ ﻣﺮﻏﻲ ﺩﺭ ﺩﻣﺎﻫﺎﻱ ﻣﺘﻔﺎﻭﺕ ﺑﺮ ﻭﻳﮋﮔﻲﻫﺎﻱ ﺷﻴﻤﻴﺎﻳﻲ ﻳﮏ ﺧﺎﮎ ﺁﻫﮑﻲ. نشریه علوم آب و خاک. 1 (21) :33-25.
  4. متانت، ک. 1392. اثر چهار اسید آلی بر گیاه پالایی سرب و نیکل بوسیله گیاه ذرت. پایان نامه کارشناسی ارشد ، بخش علوم خاک، دانشگاه شیراز.
  5. Beesley, L., E. Moreno-Jimene and J. L. Gomez-Eyles. 2010. Effects of biochar and greenwaste compost amendments on mobility, bioavailability and toxicity of inorganic and organic contaminants in a multi-element polluted soil. Environ. Pollut. 158: 2282-2287.
  6. Bouyoucos, C. J. 1962. Hydrometer method for making particle size analysis of soils. Agron, 54 (5): 462-465.
  7. Bremner, J. M. 1996. Methods of Soil Analysis. In: Sparks, D. L. (Eds). Third ed, Am. Soc. Argon. Madison, WI. PP: 1085- 1122.
  8. Burke.J. M., D. E. Longer., D. M. Oosterhuis., E. M. Kawakami, and D. A. Loka. 2014. The effect of biochar source on cotton seedling growth and development and association with conventional fertilizers. Inter. J. Plant and Soil Sci. 3: 995-1008.
  9. Carter, S., S. Shackley. S. Sohi, T. B. Suy, and S. Haefele. 2013. The impact of biochar application on soil properties and plant growth of pot grown Lettuce (Lactuca sativa) and Cabbage (Brassica chinensis). Agron. 3: 404-418.
  10. Chen, C., D. Huang, and J. Liu. 2009. Functions and toxicity of nickel in plants: recent advances and future prospects. Clean-Soil, Air, Water. 37: 4-5. 304-313.
  11. Cui, L., G. Pan, L. Li, and A. Chang. 2012. The reduction of wheat uptake in contaminated soil via biochar amendment: A two-Year field. Biores. 7: 5666-5676.
  12. Cao, X., and W. Harris. 2010. Properties of dairy-manure-derived biochar pertinent to its potential use in remediation. Biores. Technol. 101: 5222-5228.
  13. Duka, M. H., S. Gu. and Hagan, E.B. 2011. Biochar production potential in Ghana. Renewable and Sustainable Energy Reviews, 8(15): 3539-3551.
  14. Davis, R. D., PH. T. Beckett, and E. Wolan. 1978. Critical levels of 20 potentially toxic elements in barley. Plant Soil. 49: 395- 404.
  15. Ghanbari, A.A., M. R. Shakiba, M. Toorchi, and R. Choukan. 2013. Nitrogen changes in the leaves and accumulation of some minerals in the seeds of red, white and Chitti beans (Phaseolus vulgaris) under water deficit conditions. Australian J. Crop Sci.7: 706-712.
  16. Hossain. M. K., V. Strezov, K. Y. Chan, and P. F. Nelson. 2010. Agronomic properties of wastewater sludge biochar and bioavailability of metals in production of cherry tomato (Lycopersicon esculentum). Chem. 78: 1167- 1171.
  17. Houben, D., L. Evrard, and P. Sonnet. 2013. Beneficial effects of biochar application to contaminated soils on the bioavailability of Cd, Pb and Zn and the biomass production of rapeseed (Brassica napus L.). Biom. and Boen..57:196-204
  18. Inal, A., A. Gunes, O. Sahin, M. B. Taskin, and E. C. Kaya. 2015. Impacts of biochar and processed poultry manure, applied to a calcareous soil, on the growth of bean and maize. Soil Use Manag. 31: 106–113
  19. Khanmohammadi, Z., M. Afyuni, and M. R. Mosaddeghi. 2017. Effect of Sewage Sludge and its Biochar on Chemical Properties of Two Calcareous Soils and Maize Shoot Yield. Agronomy and Soil Sci, 30: 198-212.
  20. Lehmann, J., M. C. Rillig, J. Thies, C. A. Masiello, W. Hockaday. and D. Crowley. 2011. Biochar effects on soil biota. A review, Soil Biol. Biochem. 43: 1812–1836.
  21. Liang, B., J. Lehmann, D. Solomon, J. Kinyangi, J. Grossman, B. Neill, Skjemstad, J. O J. Thies, F. J. Luizao, J. Petersenand E. G Neves. 2006. Black Carbon Increases Cation Exchange Capacity in Soils. Soil Sci. Soc. Am. J. 70 (5): 1719-1730.
  22. Lindsay, W. L. and W. A.  Norvell. 1978. Development of a DTPA soil test for zinc, iron, manganese, and copper. Soil Sci. Soc. Am. J. 42 (3): 421-428.
  23. Loppert, R. H. and D. L.  Suarez. 1996. Carbonate and gypsum. p. 437- 474. In D. L. Sparks et al. (ed.) Methods of Soil Analysis. Part 3, SSSA, ASA, Madison, WI.
  24. Mendez, A., A. J.Gomez Paz-Ferreiro, and G. Gasco. 2012. Effects of sewage sludge biochar on plant metal availability after application to a Mediterranean soil. Chem. 89: 1354–1359.
  25. Mendez, A., J. Paz-Ferreirob., F. Araujob, and G. Gascoba. 2014. Biochar from pyrolysis of deinking paper sludge and its use in the treatment of a nickel polluted soil. J. Analytical App. Pyrol. 107: 46–52.
  26. Matraszek, R., M. Szymaska, and M. Wroblewska. 2002. Effect of nickel on yielding anf mineral composition of the selected vegetables. Hort. Cultus, 1: 13-22.
  27. Nelson, D. W. and L. E.   Sommers. 1996. Total carbon, organic carbon and organic matter. In Sparks, D. L.  (ed.) Methods of soil analysis. Part 3. 3rd ed. SSSA, ASA Madison, WI. PP: 961-1010.
  28. Namgay, T., B. Singh, and B. P. Singh. 2010. Influence of biochar application to soil on the availability of As, Cd, Cu, Pb, and Zn to maize (Zea mays L.). Soil Res. 48: 638–647.
  29. Pardia, B. K., I. M. Chhibba, and V. K. Nayar. 2003. Influence of nickel contaminated soils on fenugreek growth and mineral composition. Scien. Hort. 98: 133-119.
  30. Pulik, Z. 1999. Influence of nickel contaminated soils on lettuce and tomatoes. Scien. Hort. 83: 243-250.
  31. Rajkovich, S., Enders, A., Hanley, K., Hyland, C., Zimmerman, A. R. and Lehmann, J. 2011. Corn growth and nitrogen nutrition after additions of biochars with varying properties to a temperate soil. Biol. and Fert. of Soil, 48(3): 271-284.
  32. Rathor, G., N. Chopra, and T. Adhikari. 2014. Effect of variation in Nickel concentration on growth of maize plant: A comparative over view for pot and hoagland culture. Res. J. Chem. Sci. 10: 30-32.
  33. Rhoades, J. D. 1996. Salinity: Electrical Conductivity and Total Dissolved Solids. In: Methods of Soil Analysis, Chemical Method, Soil Sci. Soc. Am. and Am. Soc. Agron, Madison, WI. PP: 417-435.
  34. Rooney, C. P., F. J Zhao, and S. P McGrath. 2007. Phytotoxicity of nickel in a range of European soils: Influence of soil properties, Ni solubility and speciation. Environ. Pollut. 145: 596-605.
  35. Sabir, M., U. Sabir, and A. Ghafoor. 2011. Growth and metal ionic composition of Zea mays as affected by nickel supplementation in the nutrient solution. International J. Agri. Biol. 13:186-190.
  36. Summer, M. E. and W. P.  Miller. 1996. Cation exchange capacity and exchange coefficients. In Sparks, D. L. (ed.) Methods of soil analysis.par3.3rd. SSSA, ASA Madison, WI. PP: 1201-1229.
  37. Zhang, X., H. Wang, L. He, K. Lu, A. Sarmah, J. Li., S. Nathi., J. Pei, and H. Huang. 2013. Using biochar for remediation of soils contaminated with heavy metals and organic polltants. J. Environ. Sci. Pollut. Res .Inter. 20: 8472-8483.