اثر بیوچارهای کود گاوی و بقایای نخل تهیه شده در دماهای مختلف بر هدایت هیدرولیکی اشباع و ضرایب انتقال یون کلر در یک خاک لوم شنی

نوع مقاله : مقاله پژوهشی

نویسندگان

1 دانشیار بخش علوم خاک، دانشکده کشاورزی، دانشگاه شیراز

2 دانش‌آموخته کارشناسی‌ارشد بخش علوم خاک، دانشکده کشاورزی، دانشگاه شیراز

3 دانش‌آموخته کارشناسی‌ بخش علوم خاک، دانشکده کشاورزی، دانشگاه شیراز

چکیده

ضریب پخشیدگی –پراکندگی و سایر ضرایب انتقال املاح از ویژگی­های مهم در فرایند انتقال مواد در خاک هستند که می­تواند تحت تأثیر عوامل متعددی از جمله افزودن اصلاح­کننده­ها و مواد آلی قرار گیرند. بنابراین این پژوهش با هدف بررسی اثرات بیوچارهای تهیه شده از کود گاوی و بقایای نخل در دماهای مختلف بر ضریب پخشیدگی پراکندگی یون کلر، هدایت هیدرولیکی اشباع، میزان آب غیرمتحرک و ضریب تبادل جرمی یون کلرید در یک خاک لوم شنی انجام شد. تیمارها عبارت بودند از: شاهد، بیوچار کود گاوی (CMB400 و CMB600) و بیوچار بقایای نخل (PRB400 و PRB600) تهیه شده در دماهای 400 و 600 درجه سلسیوس (هریک در سه سطح 5/0%، 1%و 2 درصد وزنی). آزمایش در قالب طرح کاملا تصادفی با سه تکرار در شرایط آزمایشگاه و در ستون های خاک به مدت 70 روز انجام شد. کاربرد مقادیر 5/0%، 1% و 2 درصد PRB400 وPRB600  به­ترتیب سبب افزایش معنی­دار ضریب پخشیدگی-پراکندگی کلر به میزان 89%، 80%، 44% و 39%، 141% و 139 درصد در مقایسه با شاهد شد. همچنین کاربرد مقادیر 5/0%، 1% و 2 درصد CMB400 و همچنین 1% و 2 درصد CMB600به­ترتیب سبب افزایش معنی­دار ضریب پخشیدگی به مقدار 95%، 48%، 95%، 81% و 159 درصد در مقایسه با شاهد شد. در حالی­که کاربرد 1 درصد CMB600در مقایسه با شاهد اثر معنی­داری بر ضریب پخشیدگی- پراکندگی یون کلر نداشت. همچنین کاربرد مقادیر 5/0% و 1 درصد CMB400 و کاربرد 2 درصد CMB600به­ترتیب سبب افزایش معنی­دار هدایت هیدرولیکی اشباع به­میزان 24%، 18% و 29 درصد در مقایسه با شاهد شد و کاربرد مقدار 5/0 درصد PRB400و همچنین مقادیر 1% و 2 درصد PRB600  به­ترتیب سبب افزایش معنی­دار هدایت هیدرولیکی اشباع به­میزان 24%، 20% و [ACO1] 18 درصد در مقایسه با شاهد شدند. به طور کلی کاربرد بیوچار تولید شده از بقایای نخل و کود گاوی سبب افزایش میزان نسبت آب غیر متحرک و ضریب تبادل جرمی یون کلرید در خاک مورد مطالعه شد. در این پژوهش تفاوت آماری معنی­داری بین اثر بیوچارهای تولید شده از کود گاوی و بقایای نخل و همچنین دماهای 400 و 600 درجه سلسیوس (به جز در مورد اثر بیوچار بقایای نخل بر ضریب پخشیدگی-پراکندگی کلر) بر ویژگی­های هیدرولیکی در خاک وجود نداشت. نتایج نشان داد علی­رغم اینکه بیوچار ممکن است اثرات مثبت قابل ملاحظه­ای بر ویژگی­های مختلف خاک داشته باشد ولی کاربرد هر دو نوع بیوچار مورد مطالعه در این پژوهش می­تواند با افزایش ضرایب هیدرولیکی و ضرایب انتقال املاح اندازه­گیری شده، سبب تسریع در انتقال نمک­ها و ترکیبات کلریدی به منابع آبی و به­ویژه آب­های زیر­زمینی شود و این موضوع بایستی در کاربرد این اصلاح کننده­ها در خاک مدنظر قرار گیرد.



 [ACO1]ضمن تشکر از زحمات حضرتعالی/سرکارعالی در ویرایش چکیده های فارسی و انگلیسی، به استحضار می رساند تغییرات انجام شده (شامل حذف جملات اول چکیده ها) تماما پذیرفته شد.
 در نسخه چکیده فعلی اعداد انگلیسی شده اند که بایستی اصلاح شود
 

کلیدواژه‌ها


عنوان مقاله [English]

Effect of Cattle Manure and Palm Residue Biochars Produced at Different Pyrolysis Temperatures on Saturated Hydraulic Conductivity and the Coefficients of Chloride Transportation in a Sandy Loam Soil

نویسندگان [English]

  • A. A. Moosavi 1
  • E. Gavili 2
  • F. Masoudi 3
1 Associate Professor, Department of Soil Science, College of Agriculture, Shiraz University
2 M.Sc. Graduate, Department of Soil Science, College of Agriculture, Shiraz University
3 B.Sc. Graduate, Department of Soil Science, College of Agriculture, Shiraz University
چکیده [English]

Diffusion-dispersion and the other parameters of solute transport are important characteristics in material transportation within soil that can be influenced by several factors including addition of soil amendments and organic materials. Therefore, this research aimed to evaluate the effects of cattle manure and palm residue biochars produced at different pyrolysis temperatures on the diffusion-dispersion coefficient (D) of chloride, saturated hydraulic conductivity (K), immobile water content (θim), and mass exchange coefficient (α) of chloride in a sandy loam soil. Treatments consisted of control, cattle manure (CMB), and palm residue (PRB) biochar produced at 400 and 600 ˚C (CMB400, CMB600, PRB400, and PRB600, respectively). Each biochar type was applied at three levels of 0.5, 1, and 2 % wt. The experiment was conducted using a completely randomized design with three replications on soil columns under laboratory condition after 70 days incubation. Application of 0.5,1 and 2% PRB400, and PRB600 increased D parameter by 89%, 80%, 40%; and 39%, 141%, 139% as compared to that of control, respectively. Furthermore, application of 0.5%, 1%, and 2% CMB400 and 1% and 2% CMB600 significantly increased D parameter by nearly 95%, 48%, 95%; and 81% and 159% as compared to the control, respectively. On the contrary, application of 1% CMB600 had no significant effect on D parameter as compared to the control. Besides, application of 0.5% and 1% CMB400 and application of 2% CMB600 resulted in significant increases by 24%, 18%, and 29% in K as compared to the control. Application of 0.5% PRB400 and 1% and 2% PRB600 increased K by 24%, 20%, and 18% as compared to the control, respectively. In general, application of CMB and PRB increased the θim and α in the studied soil. In the present study, there were no significant differences between the effect of CMB and PRB and the applied temperatures (except for the effect of PRB on D parameter) on the studied hydraulic characteristics of the soil. Results suggest that although biochar may have positive effects on different soil properties, application of both studied biochars may intensify transportation of the solute and chloride and their entrance into water resources, particularly ground waters, by increasing the hydraulic and solute transportation coefficients. This point should be considered in the application of these soil amendments. 

کلیدواژه‌ها [English]

  • Diffusion-dispersion coefficient
  • Break through curve
  • Immobile water
  • Mass exchange coefficient
  1. تاجیک، ف. 1383. ارزیابی پایداری خاکدانه­ها در برخی مناطق ایران. مجله علوم و فنون کشاورزی و منابع طبیعی، جلد 8، صفحات 125 تا 134.
  2. صفادوست، آ.،  م. ر. مصدقی، ع. ا. محبوبی، ع. نوروزی و ق.  اسدیان.1386 .تأثیر کوتاه‌مدت خاک‌ورزی و کود دامی بر ویژگی‌های ساختمانی خاک.  نشریه علوم و فنون کشاورزی و منابع طبیعی، جلد 11، صفحات 91 تا 101.
  3. گویلی، ا.، ع. ا.  موسوی و ع. ا. کامگارحقیقی. 1395. اثر بیوچار کود گاوی و تنش رطوبتی بر ویژگی­های رشد و کارایی مصرف آب اسفناج در شرایط گلخانه ای. نشریه پژوهش آب در کشاورزی، جلد 30، صفحات 243 تا 259.  
  4. موسوی، ع. ا. و ا. گویلی. 1393. اثر کاربرد کود گاوی و ورمی کمپوست بر ضریب پخشیدگی کلر در یک خاک لوم شنی. دومین همایش ملی مدیریت آب در مزرعه، موسسه تحقیقات آب و خاک، کرج، مهرماه 1393.
  5. نقوی، ه.، م. ع. حاج عباسی و م. افیونی. 1384. تاثیرکود گاوی بر برخی خصوصیات فیزیکی و ضرایب هیدرولیکی و انتقال بروماید دریک خاک لوم شنی در کرمان. مجله علوم و فنون کشاورزی و منابع طبیعی، جلد 9، صفحات 93 تا 103.
  6. Ahmad, M., M. Akram, S. Baig, M.Y. Javed, and R. Riaz-ul-Amin. 1986. Proceeding of XII International Forum on Soil Taxonomy and Agrotechnology Transfer. 2nd Volume: Field Excursion, p. 315. Soil Survey of Pakistan, Lahore.
  7. Ajwa, H. A. and T. J. Trout. 2006. Polyacrylamide and water quality effects on infiltration in sandy loam soils. Soil Sci. Soc. Am. J., 70: 643-650.
  8. Asghari, Sh., F. Abbasi, and M. R. Neyshabouri. 2011. Effects of soil conditioners on physical quality and bromide transport properties in a sandy loam soil. Biosyst. Eng., 109: 90-97.
  9. Biggar, J. W. and D. R. Nielsen.1976. Spatial variability of the leaching characteristics of a fieldsoil.Water Resour. Res., 12: 78-84.
  10. Cely, P., G. Gasco, J. Paz-Ferreiro, and A. Mendez. 2015. Agronomic properties of biochars from different manure wastes. J. Anal. Appl. Pyrol., 111: 173–182.
  11. Downie, A.,A.Crosky and P. Munroe. 2009. Physical properties of biochar. In: J. Lehmann and S. Joseph, (Eds), Biocharfor Environmental Management: Science and Technology, Earthscan, London. pp:13-29.
  12. Ersahin, S., I. R. Papendick, J. L. Smith, C. K. Keller, and V. M. Manoranjan. 2002. Macropore transport of bromide as influenced by soil structure differences. Geoderma, 108: 207–223.
  13. Fahad Ali, A. and W. Ali Abdul-Hussein. 2002. Mobile fraction of water and transport parameters in modified structure soil. Transactions 17th Inter. Congress of Soil Sci. Symp. No. 1, P. No. 511. Bangkok. Thailand.
  14. Fooladi Dorhani, M. and A. R. Sepaskhah. 2017. Estimation of zeolite application effect on solute transport parameters at different soils using HYDRUS-1D model. Iran Agric. Res., 36: 1-10.
  15. Forster, P., V. Ramaswamy, P. Artaxo, T. Berntsen, R. Betts, D. W. Fahey, J. Haywood, J. Lean, D. C. Lowe, and G. Myhre. 2007. Changes in atmospheric constituents and in radiative forcing. Chapter 2, Climate Change . The Physical Science Basis. Contribution of Working Group I to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change [Solomon, S., D. Qin, M. Manning, Z. Chen, M. Marquis, K. B. Averyt, M. Tignor, and H. L. Miller (Eds.)]. Cambridge University Press, pp. 129-234.
  16. Gavili, E., A. A. Moosavi, and A. A. Kamgar Haghighi. 2019. Does biochar mitigate the adverse effects of drought on the agronomic traits and yield components of soybean? Indus. Crops Prod., 128: 445–454.
  17. Gavili, E., A. A. Moosavi, and F. Moradi Choghamarani. 2018. Cattle manure biochar potential for ameliorating soil physical characteristics and spinach response under drought. Arch. Agron. Soil Sci., 64: 1714- 1724.
  18. Giusquiani, P. L., M. Pagliai, G.Gigliotti, D.Businelli, and A.Beneti. 1995. Urban wastecompost effects on physical, chemical, biological soil properties. J. Environ, Qual. 24: 175-182.
  19. Glaser, B. and J. J. Birk. 2012. State of the scientific knowledge on properties and genesis of Anthropogenic Dark Earths in Central Amazonia (terra preta de Índio). Geochimica et Cosmochimica Acta, 82: 39-51.
  20. Glaser, B., J. Lehmann, and W. Zech. 2002. Ameliorating physical and chemical properties of highly weathered soils in the tropics with charcoa  a review. Biol. Fert. Soils. 35(4): 219-230.
  21. Hillel, D. 1998. Environmental Soil Physics. Academic Press. USA, pp. 249-250.
  22. Jaynes, D. B., S. D. Logsdon, and R. Horton. 1995. Field method of measuring mobile/immobile water content and solute transfer rate coefficient. Soil Sci. Soc. Am. J., 59: 352–356.
  23. Kimetu, J. M. and J. Lehmann. 2010. Stability and stabilisation of biochar and green manure in soil with different organic carbon contents. Aust. J. Soil Res., 48: 577–585.
  24. Kirkham, D. and W. L. Powers. 1972. Advanced Soil Physics. Wiley--Interscience, Wiley, New York, N.Y., 408 p.
  25. Kutilek, M. and D. Nielsen.1994. Soil Hydrology. Catena Verlag, Cremlingen-Destedt, Germany.
  26. Lee, J., D. B. Jaynes, and R. Horton. 2000. Evaluation of a simple method for estimating solute transport parameters: Laboratory studies. Soil Sci. Soc. Am. J., 64: 492–498.
  27. Lehmann, J. and S. Joseph. 2009. Biochar for environmental management. In: J. Lehmann and S. Joseph (Eds.). Biochar for Environmental Management: Science and Technology. 3rd Ed, London, Earthscan, 405 p.
  28. Li, Y. and M. Ghodrati.1994. Preferential flow of nitrate through soil columns containing root channels. Soil Sci. Soc. Am. J., 58: 653–659.
  29. Liang, B., J. Lehmann, D. Solomon, J. Kinyangi, J. Grossman, B. O’Neill, J. O. Kjemstad, J. Thies, F. J. Luiza, J. Petersen, and E. G. Neves. 2006. Black carbon increases cation exchange capacity in soils. Soil Sci. Soc. Am. J., 70: 1719-1730.
  30. Mahmood-ul-hassan, M., M. Rashid, and E. Rafique. 2011. Nutrients transport through variably structured soils. Soil Sci. Plant Nutr., 57: 331-340.
  31. Mahmood-ul-Hassan, M., M. S. Akhtar, and G. Nabi. 2008. Boron and zinc transport through intact columns of calcareous soils. Pedosphere, 18: 524–532.
  32. Major, J., J. Lehmann, M. Rondon, and C. Goodale. 2010. Fate of soil-applied blackcarbon:downward migration, leaching and soil respiration. Global Change Biol., 16: 1366-137.
  33. Mary, B., S. Recous, D. Darwis, and D. Robin. 1996. Interactions between decomposition of plant residues and nitrogen cycling in soil. Plant Soil, 181: 71-82.
  34. Mirzaee, S., A. A. Zolfaghari, M. Gorji, M. Dyck, and S. Ghorbani Ashtaki. 2013. Evaluation of infiltration models with different numbers of fitting parameters in different soil texture classes. Arch. Agron. Soil Sci., 60: 681-693.
  35. Nadler, A., E. Perfect and D. Kay. 1996. Effect of polyacrylamide applicationon the stability of dry and wet aggregates. Soil Sci. Soc. Am. J., 60: 555-561.
  36. Nyamangara, J., J. Gotosa, and S. E. Mpofu. 2001. Cattle manure effects on structural stability and water retention capacity of a granitic sandy soil in Zimbawe. Soil Till. Res., 62: 157-162.
  37. Pagliai, M., G. Guidi, M. Lamarca, M. Giachetti, and P. Lucamante. 1981. Effects of sewage sludges and composts on soil porosity and aggregation. J. Environ. Qaul., 10: 556-561.
  38. Richards, L. A. 1954. Handbook No. 60: Diagnosis and Improvement of Saline and Alkali Soils. Soil and Water Conservation Research Branch Agricultural Research Service, Soil Salinity Laboratory, USA.
  39. Saadat, S., A. R. Sepaskhah, and S. Azadi. 2012. Zeolite effects on immobile water content and mass exchange coefficient at different soil textures. Comm. Soil Sci. Plant Anal., 43: 2935-2946.
  40. Tate, R. L. 2000. Soil Microbiology. John Wily and Sons. New York, USA.
  41. Tejada, M., and J. L. Gonzalez. 2007. Influence of organic amendments on soil structure and soil loss under simulated rain. Soil Till. Res., 93: 197–205.
  42. Trompowsky, P. M., V. M. Benites, B. E.  Madart, A. S.  Pimenta, W. C.  Hockasday, and P. G. Hatcher. 2005. Characterization of humic like substances obtained by chemical oxidation of eucalyptus charcoal. Organic Geochem., 36: 1480–1489.
  43. van Genuchten, M. T. and P. J. Wierenga. 1976. Mass transfer studies in sorbing porous media. I. Analytical solutions. Soil Sci. Soc. Am. J., 40: 473-481.
  44. Zhang, R. 1997. Determination of soil sorptivity and hydraulic conductivity from the disc infiltrometer. Soil Sci. Soc. Am. J., 61: 1024-1030.