برآورد ماده آلی خاک در منطقه سمیرم با استفاده از تصاویر ماهواره ای

نوع مقاله : مقاله پژوهشی

نویسندگان

1 کارشناس ارشد آلودگی محیط زیست، دانشگاه آزاد اسلامی، واحد اصفهان (خوراسگان)، اصفهان، ایران

2 استادیارگروه محیط زیست، دانشگاه آزاد اسلامی، واحد اصفهان (خوراسگان)، اصفهان، ایران؛ مرکز تحقیقات پسماند و پساب، دانشگاه آزاد اسلامی واحد اصفهان (خوراسگان)، اصفهان، ایران

3 استادیارگروه خاکشناسی، دانشگاه آزاد اسلامی، واحد اصفهان (خوراسگان)، اصفهان، ایران

چکیده

ماده آلی خاک از مهم­ترین خصوصیات فیزیکی خاک است که تحت تأثیر عواملی از جمله پوشش گیاهی، خصوصیات خاک و اقلیم منطقه می­باشد. به منظور بررسی میزان ماده آلی خاک با استفاده از اندازه گیری زمینی و نیز سنجش از دور، پس از بررسی تصاویر ماهواره­ای، نقشه ارزیابی منابع و قابلیت اراضی منطقه، بخشی از منطقه سمیرم برای انجام آزمایش­های زمینی مشخص گردید و تصویر سنجنده OLI ماهواره لندست 8 نیز دانلود شد و بر اساس مرز منطقه مورد نظر بریده شد. نقاط نمونه­برداری با استفاده از شناسایی اولیه منطقه، نقشه­ها و آمارهای رسمی و تصاویر رنگی تهیه شده از منطقه انتخاب شد و بدین ­ترتیب تعداد 50 نمونه خاک سطحی(عمق صفر تا 20 سانتی­متری) برداشت گردید و میزان ماده آلی ، هدایت الکتریکی و pH خاک در آنها اندازه­گیری شد. برای بررسی استفاده از قابلیت تصاویر ماهواره­ای در برآورد میزان ماده آلی خاک، شاخص پوشش گیاهی تفاضلی نرمال شده و شاخص پوشش گیاهی تعدیل شده با استفاده از باندهای قرمز و مادون قرمز تصویر ماهواره‌ای لندست 8 OLI و نرم­افزارهای Terrset و ArcGIS 10.5 برآورد گردید. رابطه بین داده­های بهدست آمده از ماده آلی با شاخص‌های گیاهی با استفاده از آنالیز رگرسیون خطی و تعیین ضریب همبستگی بررسی شد. نتایج نشان­دهنده همبستگی معنی­دار بالاتر از 70 درصد بین شاخص­های گیاهی و میزان ماده آلی خاک بود. می‌توان گفت که استفاده از سنجش از دور و تصاویر ماهواره­ای می­تواند بر محدودیت­های ناشی از روش­های سنتی غلبه کرده و به عنوان یک جایگزین مناسب پایش کیفیت خاک با امکان نمایش نتایج در مقیاس­های زمانی و مکانی مختلف به خصوص برای مناطق وسیع­تر استفاده شود.

کلیدواژه‌ها


عنوان مقاله [English]

Estimating Soil Organic Matter in Semirom Area by Using Satellite Images

نویسندگان [English]

  • Motahar Fakheri 1
  • Mozhgan Ahmadi Nadoushan 2
  • Elham chavoshie 3
1 MSc., Environmental Sciences, Department of Environmental Sciences, Isfahan (Khorasgan) Branch, Islamic Azad University, Isfahan, Iran
2 Assistant Professor of Environmental Sciences, Department of Environmental Sciences, Isfahan (Khorasgan) Branch, Islamic Azad University, Isfahan, Iran; Waste and Wastewater Research Center, Isfahan (Khorasgan) Branch, Islamic Azad University, Isfahan, Iran
3 Assistant Professor of Soil Sciences, Department of Environmental Sciences, Isfahan (Khorasgan) Branch, Islamic Azad University, Isfahan, Iran
چکیده [English]

Soil organic matter is one of the most important physical properties of soil, and is affected by such factors as vegetation, soil properties, and the climate of the region. In order to determine the amount of soil organic matter, after studying satellite images and resource assessment and land capability maps, a part of Semirom region was selected for conducting field studies, and Landsat 8 OLI image was cut in accordance with the border of the study area. Sampling points were chosen through identification of the region and using maps, official statistics, and false-color composite images of the area. Accordingly, 50 soil samples were taken from the surface soil (0-20 cm) and the amount of organic matter, electrical conductivity and pH were measured. To investigate the efficiency of satellite images in determining the amount of soil organic matter, Normalized Difference Vegetation Index (NDVI) and Soil Adjusted Vegetation Index (SAVI) were estimated using satellite images and Terrest and ArcGIS 10.5 softwares, and the corresponding maps were developed. The relationship between the organic matter and vegetation indexes was examined using linear regression analysis and correlation coefficient. The results indicated significant correlation higher than 70 % between the organic matter and the vegetation indices. It could be concluded that remote sensing and satellite images can serve as tools for overcoming the limitations of traditional methods and are appropriate for monitoring the quality of soil. Remote sensing allows for displaying the results in terms of temporal and spatial scales, and is especially appropriate for extensive areas.

کلیدواژه‌ها [English]

  • Remote sensing
  • Normalized Difference Vegetation Index
  • Soil Adjusted Vegetation Index
  1. اژیرابی، ر.، کامکار، ب. و ا. عبدی. 1394. اثر مقایسه شاخص­های مختلف استخراج شده از تصاویر ماهواره لندست برای پهنه­بندی شوری خاک در مزرعه نمونه ارتش گرگان. نشریه مدیریت خاک و تولید پایدار، شماره 1، صفحه­های 173-186.
  2. امامی، ح.، لکزیان، ا. و م. مهاجرپور. 1389. بررسی رابطه بین شیب منحنی رطوبتی و بعضی از ویژگی­های فیزیکی کیفیت خاک. نشریه آب و خاک، شماره 5، صفحه­های 1027-1035.
  3. جعفری، ز.، نیک­نهاد قرماخر، ح. و چ. بایرام کمکی. 1393. بررسی خصوصیات فیزیکی شیمیایی خاک تحت دو نوع مدیریت مرتع (مطالعه موردی: مراتع چات گنبد). مجله علمی پژوهشی مهندسی اکوسیستم بیابان، شماره 4، صفحه­های 11-20.
  4. حاج عباسی، م.، بسالت پور، ع. ا. و مللی، ا. 1386. اثر تبدیل مراتع به اراضی کشاورزی بر برخی ویژگیهای فیزیکی و شیمیایی خاکهای جنوب  و جنوب غربی اصفهان. علوم و فنون کشاورزی و منابع طبیعی. سال 11، شماره 42، صفحه­های 534-525.
  5. حیدریان آقاخانی، م.، نقی­پور برج، ع. ا. و م. نصری. 1389. تأثیر قرق بر روی پوشش گیاهی و خصوصیات شیمیایی خاک در مراتع سیساب بجنورد. مجله تحقیقات منابع طبیعی تجدیدشونده، شماره 2، صفحه­های 14-27.
  6. رودگرمی، پ.، خراسانی، ن. ا.، منوری، س. م. و ج. نوری. 1388. پیش­بینی اثرات محیط زیستی توسعه با استفاده از تصاویر ماهواره­ای و تکنیک­های سنجش از دور. مجله علوم و تکنولوژی محیط زیست، شماره 1، صفحه­های 161-172.
  7. زینالی، م.، جعفرزاده، ع. ا.، شهبازی، ف. و ش. اوستان. 1395. ارزیابی شوری خاک سطحی با روش پیکسل مبنا بر اساس داده‌های سنجنده TM (مطالعه موردی: اراضی شرق شهرستان خوی- استان آذربایجان غربی). فصلنامه علمی-پژوهشی اطلاعات جغرافیایی، شماره 99، صفحه­های 127-139.
  8. شتایی، ش.، حسینعلی زاده، م. و ش. ایوبی. 1386. بررسی قابلیت داده های طیفی سنجنده ETM+ در برآورد مقدار ماده آلی سطحی خاک. مجله علمی پژوهشی مرتع، شماره اول، صفحه های 78-67.
  9. قائمی، م.، آستارایی، ع. و س. ح. ثنایی­نژاد. 1390. ارزیابی تغییرات مکانی و تخمین کربن آلی خاک در مناطق خشک و نیمه خشک با استفاده از توابع انتقالی و امکان­سنجی آن با داده­های سنجش از دور (مطالعه موردی: منطقه نیشابور). نشریه پژوهش‌های زراعی ایران، شماره 2، صفحه­های 294-300.
  10. محمودی، ف.، جعفری، ر.، کریم­زاده، ح. و ن. رمضانی. 1394. بررسی توزیع مکانی خصوصیات خاک در منطقه ورزنه اصفهان به کمک روش­های پردازش تصویر. نشریه آب و خاک (علوم و صنایع کشاورزی)، شماره 4، صفحه­های 1004-1017.
  11. واحدی، ع. ا.، متاجی، ا. و ج. اسحاقی راد. 1393. تغییرات ذخایر وزنی حوض کربن آلی خاک در ارتباط با تنوع زیستی گیاهی (مطالعه موردی: جنگل­های آمیخته راش گلندرود نور). بوم­شناسی کاربردی، شماره 7، صفحه­های 1-11.
  12. Ayoubi, S., Pilehvar Shahri, A.R., Mokhtari, P. and K. Sahrawat. 2012. Application of Artificial Neural Network (ANN) to predict soil organic matter using remote sensing data in two ecosystems. Biomass and Remote Sensing of Biomass, 19: 181-198.
  13. Badian, Z., Zahedi, G.H., Zarqhami, N. and M. Mahajer. 2010. Effect of mixed depending on the amount of carbon storage in forest soils (Case study: forest Kheiroudkenar Noshahr). J for Wood Prod, 35 to 44: 62.
  14. Barnes, E.M., Sudduth, K.A., Hummel, J.W., Lesch, S.M., Corwin, D.L., Yang, C., Daughtry, C.S.T. and Bausch, W.C. 2003. Remote and Ground-Based sensor techniques to map soil properties. Photogramm Eng Rem Sens, 69: 619-630.
  15. Bhunia, G.S., Shit, P.K. and H.R. Pourghasemi. 2017. Soil organic carbon mapping using remote sensing techniques and multivariate regression model. Geocarto Int, DOI: 10.1080/10106049.2017.1381179
  16. Chen, D.Z., Zhang, J.X. and J.M. Chen. 2010. Adsorption of methyl tert-butyl ether using granular activated carbon: Equilibrium and kinetic analysis. Int. J. Environ. Sci. Technol, 7: 235-242.
  17. Farifteh, J., Farshad, A. and R.J George. 2006. Assessing salt affected soils using remote sensing solute modeling and geophysics. Geoderma, 130: 191-206.
  18. Fisher, R.F. and D. Binkley. 2000. Ecology and Management of Forest Soils. 3rd Edn., John Wiley and Sons, UK., Pages: 78.
  19. Guo, L.B. and Gifford, R.M. 2002. Soil carbon stocks and land use change: a meta-analysis. Global Change Biol, 8: 345–360.
  20. Habibzade, A.M., Nikjou, R. and H.R. Peyrovan. 2013. Survey amount of runoff and sediment in Marn East Azerbaijan. J. Geogr. Reg. Plann, 17 (43): 71-91.
  21. Henderson, D.C, Ellert, B.H. and M.A. Naeth. 2004. Grazing and soil carbon along a gradient of Albetra rangelands. J Range Manage, 57: 402-410.
  22. Hollingsworth, T.N., Schuur, E.A.G., Schuur, F.S. and M.D. Walker. 2008. Plant community composition as a predictor of regional soil carbon storage in Alaskan boreal black spruce Ecosystems. Ecosystems, DOI: 10.1007/s10021-008-9147-y.
  23. Inan, H.I. and S. Reis. 2005. The Need of a Parcel-Based Information System to Support Agricultural Sector. FIG Working Week 2005 and GSDI-8, April 16-21, Cairo, Egypt.
  24. Jandl, R., Lindner, M., Vesterdal, L., Bauwens, B., Baritz, R., Hagedorn, F., Johnson, D.W., Minkkinen, K. and K.A. Byrne. 2007. How strongly can forest management influence soil carbon sequestration? Geoderma, 137: 253–268.
  25. Jarmer, T. and P. Rosso. 2013. Determining top soil organic carbon of agricultural soils from hyperspectral remote sensing data. Canadian Biosystems Eng, 7: 21- 32.
  26. Jimenez, J.J., Lal, R., Russo, R.O. and H.A. Leblanc. 2008. The soil organic carbon in particle-size separates under different regrowth forest stands of north eastern Costa Rica. Ecol Eng, 34: 300–310.
  27. Kania, M., Gruba, P. and M. Wiecheć. 2017. Zastosowanie techniki bliskiej podczerwieni do obliczania Siedli− skowego Indeksu Glebowego. Sylwan, 161 (11): 935−939.
  28. Karlen, D.L., Andrews, S.S. and J.W. Doran. 2001. Soil quality: Current concepts and applications. Adv in Agron, 74: 1-40.
  29. Kirby, K.R. and C. Potvin. 2007. Variation in carbon storage among tree species: Implications for the management of a small-scale carbon sink project. Forest Ecol Manag, 246: 208–221.
  30. Lal R. 2005. Forest soils and carbon sequestration. Forest Ecology and Management, 226: 242–258. http:// dx.doi.org/10.1016/j.foreco.2005.08.015.
  31. Lillesand, T.M. and Kiefer, R.W.1994. Remote Sensing and Image Interpretion, John Wiley and sons, New York, 750 pp.
  32. Mohamed, E.S., Saleh, A.M., Belal, A.B. and A. Gad. 2018. Application of near-infrared reflectance for quantitative assessment of soil properties. Egypt. J. Remote Sens. Space Sci., 21: 1–14.
  33. Mondal, A., Khare, D., Kundu, S., Mondal, S., Mukherjee, S. and A. Mukhopadhya. 2016. Spatial soil organic carbon (SOC) prediction by regression kriging using remote sensing data. Egypt. J. Remote Sens. Space Sci, 20 (1): 61-70.
  34. Muller, T. and H. Hoper. 2004. Soil organic matter turnover as a function of the soil clay content: consequences for model applications. Soil Biol Biochem, 36: 877–888.
  35. Nawar, S., Buddenbaum, H., Hill, J., Kozak, J. and A.M. Mouazen. 2015. Estimating the soil clay content and organic matter by means of different calibration methods of vis-NIR diffuse reflectance spectroscopy. Soil & Tillage Res, 1-13.
  36. Psomas, A., Kneubuhler, M., Huber, S., Itten, K. and Zimmermann, N.E. 2011. Hyperspectral remote sensing for estimating aboveground biomass and for exploring species richness patterns of grassland habitats. Int J Remote Sens, 32: 9007–9031.
  37. Quiroga, A., Fernandez, R. and Noellemeyer, E. 2009. Grazing effect on soil properties in conventional and no-till systems. Soil Till. Res., 105: 164-170
  38. Ray, S.S., Singh, J.P., Dasa, G. and S. Panigrahy. 2004. Use of high resolution remote sensing data for generating sitespecific soil mangement plan. Proceedings of The 4th International Society for Photogrammetry and Remote sensing congress. July 12-23, Istanbul, Turkey.
  39. Saleh, A. M. 2015. Relationship between vegetation indices of Landsat-7 ETM+, MSS data and some soil properties: case study of Baghdad, Diyala, Iraq. IOSR Journal of Agriculture and Veterinary Science (IOSR-JAVS), 8(2): 18-31.
  40. Saxsena, R.K., Verma, K.S., Rajeev Srivastava, Janardan Yadav, N.K., Patel, Nasre, R.A., Barthwal, A.K., Shiwalkar, A.A. and S.L. Londhe. 2003. Spectral reflectance properties of some dominant soils occurring on different altitudinal zones in Uttarancha Himalayas. Agropedology, 13: 35-43.
  41. Schimel, D., Stillwell, M.A. and Woodmansee, R.G. 1985. Biogeochemistry of C, N and P in a soil catena of short grass steppe. Ecology, 66: 276-282.
  42. Schmidt, M., Torn, W.I., Abiven, M.S., Dittmar, S., Guggenberger, T., Janssens, G., Kleber, I.A., Kogel-Knabner, M., Lehmann, I., Manning, J., Nannipieri, P., Rasse, D.P., Weiner, S. and S.E. Trumbore. 2011. Persistence of soil organic matter as an ecosystem property. Nature, 478 (7367): 49-56.
  43.  Sierra C.A.,  Trumbore, S.E., Davidson, E.A., Vicca, S. and I. Janssens. 2015. Sensitivity of decomposition rates of soil organic matter with respect to simultaneous changes in temperature and moisture. J Adv Model Earth Sy, 7: 335-356.
  44. Stephens, S.C., Rasmussen, V.P., Ramsey, R.D., Whitesides, R.E., Searle, G.S. and R.L. Newhall. 2005. Remote sensing organic carbon in soil. USU/NASA SGEP Projects; available online (15-09-05) , www.extnasa.usu.edu/link_pages/downloads/remote_sensing_carbon.pdf.
  45. Su, Y.Z., Zhao, H.L., Zhang, T.H. and Zhao, X.Y. 2004. Soil properties following cultivation and non-grazing of a semi-arid sandy grassland in northern China. Soil Till. Res., 75: 27–36.
  46. Snyman, H.A. and Du Preez, C.C. 2005. Rangeland degradation in a semi-arid South Africa — II: influence on soil quality. J. Arid Environ., 60: 483–507.
  47. Vahabi, J. and D. Nikkami. 2008. Assessing dominant factors affecting soil erosion using a portable rainfall simulator. Int J Sediment Res, 23: 376-386.
  48. Viscarra Rossel, R.A. 2008. ParLeS: software for chemometric analysis of spectroscopic data. Chemom. Intell. Lab. Syst, 90: 72–83.
  49. Walkley, A. and I.A. Black. 1934. An examination of Degtjareff method for determining soil organic matter and proposed modification of the chromic acid titration method. J Soil Sci, 37: 29-37.
  50. Walker SM, Desanker PV. 2004. The impact of land use on soil carbon in Miombo Woodlands of Malawi. Forest Ecology and Management, 203: 345–360.
  51. Wen, L., Dong, S., Li, Y., Wang, X., Li, X., Shi, J. and Dong, Q. 2012. The impact of land degradation on the C pools in alpine grasslands of the Qinghai–Tibet Plateau. Plant Soil, 368: 329–340.
  52. Wu, R. and Tiessen, H. 2002. Effect of land use on soil degradation in alpine grassland soil, China. Soil Sci. Soc. Am. J., 66: 1648–1655.
  53. 53. Xiangfeng, W.and M. Jihua. 2014. Mapping soil organic matter content in field using HJ-1 satellite image. Transactions of the Chinese Society of Agricultural Engineering, 30(8): 101-108.
  54.  Yibing, Q. 2008. Impact of habitat heterogeneity on plant community pattern in Gurbantunggut Desert. Geogr Sci, 14: 447-455.
  55.  Zare Chahouki, M.A., Khalasi Ahvazi, L. and H. Azarnivand. 2010. Environmental factors affecting distribution of vegetation communities in Iranian Rangelands. Vegetos, 23: 1-15.