اثر کاربری اراضی بر برخی ویژگی‌های فیزیکی و شیمیایی یک خاک آهکی

نوع مقاله: مقاله پژوهشی

نویسندگان

1 دانش‌ آموخته کارشناسی‌ارشد، بخش علوم و مهندسی خاک، دانشکده کشاورزی، دانشگاه شیراز

2 دانشیار بخش علوم و مهندسی خاک، دانشکده کشاورزی، دانشگاه شیراز

3 استاد بخش مهندسی آب، دانشکده کشاورزی، دانشگاه شیراز

چکیده

تخریب خاک یکی از مهم­ترین مسائل پیش روی بشر است که بر کیفیت خاک اثر می گذارد. از آنجایی که تغییر در کاربری اراضی بر ویژگی­های خاکی دخیل در کیفیت خاک موثر است، این پژوهش با هدف بررسی اثر کاربری اراضی بر برخی ویژگی­های فیزیکی و شیمیایی خاک انجام شد. آزمایش در 25 نقطه واقع در یک شبکه نسبتاً منظم با فواصل 5×5 متر (حدود 400 متر مربع)[H1]  در هر یک از سه کاربری زراعت معمولی، زراعت یونجه و باغ در منطقه باجگاه در استان فارس انجام و نمونه خاک از عمق صفر تا 20 سانتی­متری هر نقطه برداشت شدنمونه­ها هوا خشک و از الک دو میلی­متری عبور داده و برخی ویژگی­های فیزیکی و شیمیایی اندازه­گیری شدند. میزان رس، بعد فراکتال، سدیم، پتاسیم و منیزیم محلول، نسبت جذب سدیم و ظرفیت تبادل کاتیونی در خاک کاربری زراعت یونجه در مقایسه با کاربری زراعت معمولی به­طور معنی­داری به­ترتیب به میزان 9/15%، 05/1%، 1/70%، 1/50%، 5/36%، 5/69%و 9/12% کاهش یافت. درحالی­که میزان شن، سیلت، قابلیت هدایت الکتریکی عصاره اشباع، کلسیم محلول و کربنات کلسیم معادل در خاک کاربری زراعت یونجه در مقایسه با زراعت معمولی به­طور معنی­داری به­ترتیب به میزان 8/32%، 85/8، 4/37%، 7/29% و 15% افزایش یافت. تفاوت معنی­داری بین میانگین چگالی ظاهری (به­ترتیب با مقادیر 24/1 و 27/1 گرم بر سانتی­متر مکعب)، رطوبت اشباع (28/0 و 27/0 سانتی­متر مکعب بر سانتی متر مکعب)، شاخص پایداری ساختمان (54/2% و 52/2%)، پ­هاش (03/8 و 03/8)، ماده آلی (44/2% و 39/2%)و توانایی ترسیب کربن (352 و 352 تن در هکتار) در خاک کاربری­های زراعت معمولی و یونجه مشاهده نشد. تغییر کاربری از زراعت معمولی به باغ سبب کاهش معنی­دار سیلت، رس، بعد فراکتال، رطوبت اشباع، پ­هاش و ظرفیت تبادل کاتیونی به­ترتیب به میزان 36/3%، 8/34%، 46/2%، 07/%6، 0/1 و 7/16% شد. درحالی­که تغییر کاربری مذکور سبب افزایش معنی­دار میزان شن، شاخص پایداری ساختمان، قابلیت هدایت الکتریکی عصاره اشباع، ماده آلی، توانایی ترسیب کربن، سدیم، پتاسیم و کلسیم محلول، نسبت جذب سدیم و کربنات کلسیم معادل به­ترتیب به میزان 404%، 5/83%، 8/68%، 7/53%، 1/57%، 107%، 7/65%، 7/58%، 81% و 3/33% شد. تفاوت معنی­داری بین چگالی ظاهری و منیزیم محلول خاک در اثر تغییر کاربری از زراعت معمولی به باغ مشاهده نشد. به طور کلی بسیاری ویژگی­های مؤثر بر کیفیت خاک تحت تأثیر تغییر کاربری اراضی قرار گرفت. بنابراین مدیریت مناسب اراضی برای حفاظت از منابع خاک ضروری می­باشد.



 [H1]?!!

کلیدواژه‌ها


عنوان مقاله [English]

Effect of Land Use on of Some Physical and Chemical Properties of a Calcareous Soil

نویسندگان [English]

  • Hasan Mozaffari 1
  • Seyyed Ali Akbar Moosavi 2
  • Alireza Sepaskhah 3
1 Former M.Sc. Student, Department of Soil Science, College of Agriculture, Shiraz University
2 Associate Professor, Department of Soil Science, College of Agriculture, Shiraz University
3 Professor, Department of Water Engineering, College of Agriculture, Shiraz University
چکیده [English]

Soil degradation is one of the most important issues facing humanity.Since land use change affects soil properties, this study aimed to investigate the effects of land use on some soil physical and chemical attributes. Experiment was conducted at 25 experimental locations on a relatively regular network design with 5×5 meter distance intervals in each three studied land uses including annual cultivated field (ACF), perennial alfalfa field (PAF) and orchard field (OF) in Bajgah region, Fars Province.  Soil samples were collected from 0 to 20 cm depth, air dried, and passed through a 2 mm sieve and some physico-chemical properties were determined. Clay content, fractal dimension (D), soluble sodium (Na), potassium (K) and magnesium (Mg), sodium adsorption ratio (SAR) and soil cation exchange capacity (CEC) in PAF in comparison with ACF showed significant decreases of 15.9%, 1.05%, 70.1%, 50.1%, 36.5%, 69.5%, and 12.9%, respectively. However, values of sand, silt, electrical conductivity (EC), soluble calcium (Ca) and calcium carbonate equivalent (CCE) in the soil of PAF in comparison with ACF showed significant increases of 32.8%, 8.85%, 37.4%, 29.7%, and 15%, respectively. There were no significant differences between the mean values of bulk density (BD, respectively with 1.24 and 1.27 g cm-3), saturation moisture (0.28 and 0.27 cm-3), structural stability index (SI, 2.54 and 2.52%), pH (8.03 and 8.03), organic matter (OM, 2.44 and 2.39%) and carbon sequestration (CS, 352 and 352 ton ha-1) between the ACF and PAF land uses. Land use change from ACF to OF caused a significant decrease of 3.36%, 34.8%, 2.46%, 6.07%, 1.0, and 16.7% in silt, clay, D, saturation moisture, pH, and CEC, respectively. However, ACF to OF land use change caused significant increases of 404%, 83.5%, 68.8%, 53.7%, 57.1%, 107%, 65.7%, 58.7%, 81%, and 33.3% in sand, SI, EC, OM, Cs, soluble Na, K, and Ca, SAR, and CCE, respectively. There were no significant differences between BD and soluble Mg in the soils of ACF and OF. Generally, land use change affected many soil physical and chemical properties influencing soil quality. Therefore, proper land management is essential to protect soil resources.

کلیدواژه‌ها [English]

  • Annual cultivated field
  • Alfalfa field
  • Orchard field
  • Soil quality
  • Soil structural stability index
  1. جعفرزاده، ع. ا.، ن. دواتگر، و م. حکیمیان. 1377. بررسی پارامترهای توزیع فراوانی جامعه متغیرهای منتخب خاک در یک ردیف از واحدهای مختلف فیزیوگرافی نواحی دریای خزر. مجله دانش کشاورزی. جلد 8، صفحه­های 147 تا 170.
  2. حاج عباسی، م. ع.، ا. بسالت پور، و ا. مللی. 1386. اثر تبدیل مراتع به اراضی کشاورزی بر برخی ویژگی­های فیزیکی و شیمیایی خاک­های جنوب و جنوب غربی اصفهان. مجله علوم و فنون کشاورزی و منابع طبیعی. جلد 11، شماره 42، صفحه­های 525 تا 534.
  3. رسول­زاده، ع.، س. رضوی قلعه جوق، و م. نیشابوری. 1391. ارزیابی دقت روش­های برآورد هدایت هیدرولیکی اشباع برای خاک­های مختلف. مجله پژوهش­های آب در کشاورزی. جلد 26، شماره 3، صفحه­های 303 تا 316.
  4. ریاحی، م. ر.، ق. وهاب­زاده، و ر. راعی. 1395. نقش تغییر کاربری اراضی بر برخی خصوصیات فیزیکی و شیمیایی خاک (مطالعه موردی: حوضه آبخیز کیاسر کلوگاه). نشریه دانش آب و خاک. جلد 26، شماره 1، صفحه­های 159 تا 171.
  5. غلامی، ل.، م. داوری، ک. نبی اللهی، و ح. جنیدی جعفری. 1395. تأثیر تغییر کاربری اراضی بر برخی ویژگی­های فیزیکی و شیمیایی خاک (مطالعه موردی: بانه). نشریه حفاظت منابع آب و خاک. جلد 5، شماره 3، صفحه­های 13 تا 27.
  6. فروغی­فر، ح.، ع. ا. جعفرزاده، ح. ترابی گل­سفیدی، ن. علی اصغرزاد، ن. تومانیان و ن. دواتگر. 1390. تغییرات مکانی برخی ویژگی­های فیزیکی و شیمیایی خاک سطحی در شکل­های اراضی مختلف دشت تبریز. مجله دانش آب و خاک. جلد 21، شماره 3، صفحه­های 1 تا 21.
  7. محمودی، ا.، م. مهدوی، و م. ر. جوادی. 1392. توان ذخیره کربن خاک در انواع کاربری اراضی اکوسیستم. فصلنامه علمی پژوهشی اکوسیستم‌های پژوهشی ایران. جلد سوم، صفحه­های 101 تا 114.
  8. Anderson, D.W., and D.C. Coleman. 1985. The dynamics of organic matter in grassland soils. J. Soil Water Conserv. 40(2):211-216.
  9. Arshad, M.A., B. Lowery, and B.Grossman. 1996. Physical Tests for Monitoring Soil Quality. p. 123-141. In: J.W. Doran, and A.J. Jones (eds). Methods for assessing soil quality. Madison, WI.
  10. Bahrami, A., I. Emadodin, M. Ranjbar Atashi, and H. Rudolf Bork. 2010. Land-use change and soil degradation: A case study, North of Iran. Agric. Biol. J. N. Am. 1(4):600-605.
  11. Baumhardt, R.L., C.W. Wendt, and J. Moore. 1992. Infiltration in response to water quality, tillage, and gypsum. Soil Sci. Soc. Am. J. 56(1):261-266.
  12. Bewket, W., and L. Stroosnijder. 2003. Effects of agroecological land use succession on soil properties in Chemoga watershed, Blue Nile basin, Ethiopia. Geoderma. 111(1):85-98.
  13. Bolan, N.S., M.J. Hedley, and R.E. White. 1991. Processes of soil acidification during nitrogen cycling with emphasis on legume based pastures. Plant Soil. 134(1):53-63.
  14. Bowman, R.A., J.D. Reeder, and R.W. Lober. 1990. Changes in soil properties in a central plains rangeland soil after  20, 30 and 60 years of cultivation. Soil Sci. 150(6):851-857.
  15. Carneiro, J.S., R.M. Nogueira, M.A. Martins, D.M. Valladao, and E.M. Pires. 2018. The oven-drying method for determination of water content in Brazil Nut. Biosci. J. 34(3):595-602.
  16. Celik, I. 2005. Land-use effects on organic matter and physical properties of soil in a southern Mediterranean highland of Turkey. Soil Tillage Res. 83(2):270-277.
  17. Dahiya, I.S., J. Richter, and R.S. Malik. 1984. Soil spatial variability: a review. Int. J. Trop. Agric. 11(1): 1-102.
  18. Doran, J.W., M. Sarrantonio, and M.A. Liebig. 1996. Soil health and sustainability. Adv. Agron. (USA). 56:1-54.
  19. Gee, G.W., and J.W. Bauder. 1986. Particle size analysis, hydrometer methods. p. 383-411. In: D.L. Sparks et al. (eds.). Method of Soil Analysis. Part 1. Physical and Mineralogical Methods. ASA and SSSA, Madison, WI, USA.
  20. Ghanbarian-Alavijeh, B., and H. Millán. 2009. The relationship between surface fractal dimension and soil water content at permanent wilting point. Geoderma. 151(3):224-232.
  21. Gregory, A.S., N.R.A. Bird, C.W. Watts, and A.P. Whitmore. 2012. An assessment of a new model of dynamic fragmentation of soil with test data. Soil Tillage Res. 120:61-68.
  22. Guggenberger, G., B.T. Christensen, and W. Zech. 1994. Land‐use effects on the composition of organic matter in particle‐size separates of soil: I. Lignin and carbohydrate signature. Eur. J .Soil Sci. 45(4):449-458.
  23. Hajabbasi, M.A., A. Jalalian, and H.R. Karimzadeh. 1997. Deforestation effects on soil physical and chemical properties, Lordegan, Iran. Plant Soil. 190(2):301-308.
  24. Helmke, P., and D.L. Sparks. 1996. Lithium, sodium, potassium, rubidium, and cesium. p. 551-574. In: D.L. Sparks et al. (eds.). Method of Soil Analysis. Part 3. 3rd ed. Chemical and Microbiological Properties. ASA and SSSA, Madison, WI, USA.
  25. Kelishadi, H., M.R. Mosaddeghi, M.A. Hajabbasi, and S. Ayoubi. 2014. Near-saturated soil hydraulic properties as influenced by land use management systems in Koohrang region of central Zagros, Iran. Geoderma. 213:426-434.
  26. Kennedy, A.C., and R.I. Papendick. 1995. Microbial characteristics of soil quality. J. Soil Water Conserv. 50(3):243-248.
  27. Kizilkaya, R., and O. Dengiz. 2010. Variation of land use and land cover effects on some soil physico-chemical characteristics and soil enzyme activity. Zemdirbyste. 97(2):15-24.
  28. Klingebiel, A.A., and A.M. Oneal. 1992. Structure and influence on tilth of soil. Soil Sci. Soc. Am. J. 16:77-80.
  29. Kong, X., F. Zhang, Q. Wei, Y. Xu, and J. Hui. 2006. Influence of land use change on soil nutrients in an intensive agricultural region of North China. Soil Tillage Res. 88(1):85-94.
  30. Kosmas, C., S. Gerontidis, and M. Marathianou. 2000. The effect of land use change on soils and vegetation over various lithological formations on Lesvos (Greece). Catena. 40(1):51-68.
  31. Layon, T.L., H.O. Buckman, and N.C. Bray. 1999. The Nature and Properties of Soil. 12th ed. Mac Millan Co. NY, USA.
  32. Loeppert, R.H., and D.L. Suarez. 1996. Carbonate and gypsum. p. 437-474. In: D.L. Sparks et al. (eds.). Methods of Soil Analysis. Part 3. 3rd ed. Chemical and Microbiological Properties. ASA and SSSA, Madison, WI, USA.
  33. Malo, D., T. Schumacher, and J. Doolittle. 2005. Long-term cultivation impacts on selected soil properties in the northern Great Plains. Soil Tillage Res. 81(2):277-291.
  34. Momtaz, H.R., A.A. Jafarzadeh, H. Torabi, S. Oustan, A. Samadi, N. Davatgar, and R.J. Gilkes. 2009. An assessment of the variation in soil properties within and between landform in the Amol region, Iran. Geoderma. 149(1):10-18.
  35. Moosavi, A.A., and A.R. Sepaskhah. 2012. Spatial variability of physico-chemical properties and hydraulic characteristics of a gravelly calcareous soil. Arch. Agron. Soil Sci. 58(6):631-656.
  36. Natural Resources Conservation Service (NRCS), USDA. 1996. Soil Quality Information Sheet. Soil Quality Indicators.
  37. Nelson, D.W., and L. E. Sommers. 1996. Total carbon, organic carbon, and organic matter. p. 961-1010. In: D.L. Sparks et al. (eds.). Method of Soil Analysis. Part 3. 3rd ed. Chemical and Microbiological Properties. ASA and SSSA, Madison, WI, USA.
  38. Paz-Gonzalez, A., S.R. Vieira, and M.T.T. Castro. 2000. The effect of cultivation on the spatial variability of selected properties of an umbric horizon. Geoderma. 97(3):273-292.
  39. Pieri, C.J.M.G. 1992. A Future for Farming in the West African Savannah. Fertility of Soils. Springer-Verlag, Berlin, Germany.
  40. Rhoades, J.D. 1996. Salinity: Electrical conductivity and total dissolved salts. p. 417-436. In: D.L. Sparks et al. (eds.). Methods of Soil Analysis. Part 3. 3rd ed. Chemical and Microbiological Properties. ASA and SSSA, Madison, WI, USA.
  41. Rhoades, J.D., R.W. Skaggs, and J.V. Schilfgaarde. 1999. Use of saline drinage water for irrigation. Am. Soc. Agron. 615-657
  42. Richards, L.A. 1954. Diagnosis and improvement of saline and alkali soils. In: L.A. Richards (ed.). U. S. Salinity Labroratory Staff, USDA Hand book NO. 60. Washangton, DC, USA, 160 P.
  43. Six, J., H. Bossuyt, S. Degryze, and K. Denef. 2004. A history of research on the link between (micro) aggregates, soil biota, and soil organic matter dynamics. Soil Tillage Res. 79:7–31.
  44. Solomon, D., J. Lehmann, and W. Zech. 2000. Land use effects on soil organic matter properties of chromic luvisols in semi-arid northern Tanzania: carbon, nitrogen, lignin and carbohydrates. Agric. Ecosyst. Environ. 78(3):203-213.
  45. Sumner, M.E. and W.P. Miller. 1996. Cation exchange capacity and exchange coefficients. p. 1201-1229. In: D.L. Sparks et al. (eds). Methods of Soil Analysis. Part 3. 3rd ed. ASA and SSSA, Madison WI, USA.
  46. Taboada Castro, M., A. Paz Gonzalez, and G. Garcia. 1996. Effect of conventional cultivation on the biodiversity of soil properties. Paper presented at the 12. Reunion Bienal de la Real Sociedad Espanola de Historia Natural, Madrid (Espana), 11-15 Mar 1996.
  47. Tejada, M., and J.L. Gonzalez. 2008. Influence of two organic amendments on the soil physical properties, soil losses, sediments and runoff water quality. Geoderma. 145(3):325-334.
  48. Thomas, G.W. 1996. Soil pH and soil asidity. p. 475-490. In: D.L. Sparks et al. (eds.). Method of Soil Analysis. Part 3. 3rd ed. Chemical and Microbiological Properties. ASA and SSSA, Madison, WI, USA.
  49. Tyler, S.W., and S.W. Wheatcraft. 1992. Fractal scaling of soil particle-size distributions: analysis and limitations. Soil Sci. Soc. Am. J. 56(2):362-369.
  50. Wallace, A., and R.E. Terry. 1998. Introduction: soil conditioners, soil quality and soil sustainability. p. 1-41. In: A. Wallace, and R.E. Terry (eds.). Handbook of Soil Conditioners (Substances that Enhance the Physical Properties of Soil). CRC Press, USA.
  51. Wang, J., W.W. Tsang, and G. Marsaglia. 2003. Evaluating Kolmogorov's distribution. J. Stat. Softw. 8(18):1-4.
  52. Wilson, E.O. 1988. The current state of biological diversity. Biodivers. 521(1):3-18.
  53. Wilding, L.P. 1985. Spatial variability: its documentation, accommodation and implication to soil surveys. p. 166-194. In: Soil Spatial Variability. Workshop.
  54. Zheng, Z.C., S.Q. He, and T.X. Li. 2011. Fractal dimensions of soil structure and soil anti-erodibility under different land use patterns. Afr. J. Agric. 6(24):5496-5504.