اثر تغییر کاربری اراضی بر میزان کربن آلی خاک در منطقه توتکابن استان گیلان

نوع مقاله : مقاله پژوهشی

نویسندگان

1 دانش آموخته کارشناسی ارشد گروه علوم خاک، دانشکده علوم کشاورزی، دانشگاه گیلان

2 استادیار گروه علوم خاک، دانشکده علوم کشاورزی، دانشگاه گیلان

3 دانشیار گروه علوم خاک، دانشکده علوم کشاورزی، دانشگاه گیلان

چکیده

افزایش فعالیت‌های انسانی به ویژه تغییر کاربری اراضی از مهمترین علل تخریب کیفیت خاک در جهان است، زیرا نوع استفاده از زمین بر ذخیره کربن آلی خاک و اجزای آن بسیار اثرگذار است. کربن آلی خاک به علت تأثیر مستقیم بر ویژگی‌های فیزیکی، شیمیایی و زیستی خاک، در ارزیابی کیفیت خاک از اهمیت زیادی برخوردار است. هدف از این مطالعه بررسی اثر تغییر کاربری اراضی بر تغییرات اجزای اندازه‌ای کربن آلی خاک و شاخص‌های مدیریت کربن خاک در منطقه توتکابن استان گیلان می‌باشد. به این منظور سه کاربری متفاوت شامل جنگل، گندم دیم‌ و مرتع و سه موقعیت دامنه انتخاب شدند و در هر کاربری و موقعیت دامنه، از عمق 15-0 سانتی‌متری خاک نمونه‌های مرکب خاک به طور کاملاً تصادفی برداشت شد. سپس، ماده آلی ذره‌ای در توده خاک و خاکدانه‌ها و ماده آلی هم‌اندازه سیلت و رس و کربوهیدرات در توده خاک اندازه‌گیری شد. مقدار ذخیره کربن [f1] و شاخص ذخیره کربن بر اساس کربن آلی ناپایدار محاسبه شد. نتایج به صورت فاکتوریل و در قالب طرح کاملا تصادفی بررسی گردید. نتایج نشان داد که بیشترین مقادیر ماده آلی ذره‌ای، ماده آلی هم‌اندازه سیلت و رس، کربوهیدرات و ذخیره کربن مربوط به جنگل و کم‌ترین مقادیر مربوط به مرتع است. میانگین ماده آلی ذره‌ای در کاربری جنگل نسبت به دیم و مرتع به ترتیب 105% و 423% درصد بیشتر بود. نتایج نشان داد که بیشترین درصد کربن آلی ذره‌ای در خاکدانه‌های درشت وجود داشت. بنابراین، عواملی که پایداری و تخریب این خاکدانه ها را کنترل می کنند، می‌توانند ذخایر کربن آلی خاک را نیز کنترل نمایند. شاخص ذخیره کربن در کاربری‌های گندم دیم و مرتع نسبت به جنگل به ترتیب 45% و 82% کاهش نشان داد. همچنین شاخص مدیریت کربن در کاربری گندم دیم و مرتع نسبت به جنگل به ترتیب 67% و 2/80% درصد کمتر بود.



 [f1]عبارت "با روش عمق ثابت" حذف شود.در قسمت مواد و روشها کامل و روشن این روش توضیح داده شده است.

کلیدواژه‌ها


عنوان مقاله [English]

Effect of Land Use Change on Organic Carbon Storage in Aggregates and Bulk Soil in Tootkabon Area, Guilan Province

نویسندگان [English]

  • Mozhdeh Taghipour 1
  • N. Yaghmaeian Mahabadi 2
  • Mahmoud ShabanpourShahrestani 3
1 MSc., Soil Science Department, Faculty of Agricultural Sciences, University of Guilan, Iran
2 Assistant Professor, Department of Soil Science, Faculty of Agricultural Sciences, University of Guilan, Iran
3 Associated Professor, Department of Soil Science, Faculty of Agricultural Sciences, University of Guilan, Iran
چکیده [English]

Increasing anthropogenic disturbances, especially on land use change, is the major cause of soil quality deterioration in the world. Soil organic carbon has recently gained prominence in assessment of soil quality since it affects chemical, physical and biological aspects of the soil. This study was carried out to investigate the impact of land use change on some carbon fractions and carbon management index (CMI) in Tootkabon area, Guilan province. Three land uses (forest, dry farming, and rangeland) and three slope positions were selected. Soil sampling was done randomly from 0-15 cm depth of each land use and slope position. Particulate organic matter (POM) was measured in both bulk soil and aggregate particles and mineral associated organic matter (MOM) and extractable carbohydrate were measured in bulk soil. Carbon management index and carbon pool index were calculated using forest soil as a reference. Results showed that the highest and lowest amounts of particulate organic matter, mineral associated organic matter, and carbohydrate, and carbon pools were obtained in, respectively, forest and rangeland. Results also showed that the particulate organic matter in forest was increased by, respectively, 105% and 423% compared to dry farming and rangeland.[H1]  The highest percentage of particulate organic carbon was stored in macro aggregates, thus, the factors that control the stability and degradation of these aggregates can control soil organic carbon storage. Results showed that carbon pool index in dry farming and rangeland was decreased by, respectively, 45% and 82% compared to forest; and carbon management index in dry farming and rangelands was declined by 67% and 80.2%, respectively.



 [H1]در متن انگلیسی مطلب متفاوت نوشته شده! یکسان شود.

کلیدواژه‌ها [English]

  • Particle size fractionation
  • Particulate organic matter
  • Mineral associated organic matter
  • Carbon management index
  1. بنائی، م. ح. 1377 .نقشه رژیم رطوبتی و حرارتی خاک‌های ایران. مؤسسه تحقیقات خاک و آب، تهران، ایران، 1 برگ.
  2. جعفری، س.، گلچین، ا. و طولابی‌فرد. ا. 1395. تأثیر تغییر کاربری اراضی بر خصوصیات اجزاء فیزیکی ماده آلی، میزان رس قابل انتشار و پایداری خاکدانه‌ها در برخی از اراضی استان خوزستان. نشریه تحقیقات آب و خاک ایران، 47 (3):593-603.
  3. زارعی، و. 1390. اثر تغییر کاربری اراضی و موقعیت شیب بر بخش‌های کربن آلی خاک. پایان نامه کارشناسی ارشد، دانشکده کشاورزی، دانشگاه بوعلی سینا.
  4. کریمی، ر.، صالحی، م. ح. و مصلح، ز. 1394. تأثیر تغییر کاربری اراضی بربرخی از اجزای کربن توده خاک و خاکدانه در منطقه صفاشهر استان فارس. نشریه مدیریت خاک و تولید پایدار، 5 (1): 145-157.
  5. فلاح‌زاده، ج. و حاج عباسی، م. ع. 1389. بررسی ذخایر مواد آلی خاک‌دانه در خاک‌های رسی تحت کاربری مرتع تخریب‌شده و کشاورزی در زاگرس مرکزی. نشریه پژوهش‌های حفاظت آب و خاک، 17 (3): 179-194.
  6. فهیم، ز.، دلاور، م. ا. و گلچین، ا. 1392 . تأثیر نوع پوشش جنگلی بر ذخیره کربن آلی و خصوصیات خاک در جنگل خیرودکنار، نوشهر. نشریه علوم آب و خاک، ۱۷ (۶۳) :۱۳۷-۱۴۹.
  7. محمودزاده، ح.، شکل آبادی، م. و محبوبی، ع. ا. 1393. اثر تغییر کاربری زمین بر اندوخته‌های کربن آلی خاک در زمین‌های حاشیه دریاچه زریبار مریوان. نشریه علوم آب و خاک، ۱۸ (۶۸): ۵۵-۶۸.
  8. Ashagrie, Y., W. Zech, G. Guggenberger, and T. Mamo. 2007. Soil aggregation and total and particulate organic matter following conversion of native forests to continuous cultivation in Ethiopia. Soi. Til. Res. 94: 101-108
  9. Bayer, C., J. Mielniczuk, T.J.C. Amado, L. Martin-Neto, and S.V. Fernandes. 2000. Organic matter storage in a sandy clay loam Acrisol affected by tillage and cropping systems in southern Brazil. Soil Till. Res. 54: 101–109.
  10. Benbi, D.K., K. Brar, A.S. Toor, and P. Singh. 2014. Total and labile pools of soil organic carbon in cultivated and undisturbed soils in northern India. Geoderma. 237: 149–158.
  11. Blair, G.J., R.D.B. Lefroy, and L. Lisle. 1995. Soil carbon fractions based on their degree of oxidation, and the development of a carbon management index, for agricultural systems. Australian J. of Agri. Res. 46: 1459–1466.
  12. Bouajila, A., and T. Gallali. 2010. Land use effect on soil and particulate organic carbon, and aggregate stability in some soils in Tunisia. Afr. J. Agric. Res. 5: 764-774.
  13. Cambardella, C.A., A.M. Gajda, J.W. Doran, B.J. Wienhold, and T.A. Kettler. 2001. Estimation of particulate and total organic matter by weight loss-on-ignition. p. 349-359. In R. Lal et al. (ed.). Assessment methods for soil carbon. CRC, Boca Raton, FL.
  14. Chenu, C., Y. Le Bissonnais, and D. Arrouays. 2000. Organic matter influence on clay wettability and soil aggregate stability. Soil Sci. Soc. Am. J. 64: 1479–1486.
  15. Conant, R.T., J. Six, and K. Paustian. 2003. Land use effects on soil carbon fractions in the southeastern United States. I. Management-intensive versus extensive grazing. Biol. Fertil. Soils. 38: 386-392.
  16. Diekow, J., J. Mielniczuk, H. Knicker, C. Bayer, D.P. Dick, and I. Kogel-Knaber. 2005. Carbon and nitrogen stocks in physical fractions of a subtropical Acrisol as influenced by long-term no-till cropping systems and N fertilization. Plant and Soil. 268: 319–328.
  17. Dubois, M., K.A. Gilles, J.K. Hamillton, P.A. Rebers, and F. Smith. 1956. Colorimetric method of determination of sugars and related substances. J. Anal. Chem. 28: 350-356.
  18. Fang, H.J., S.L. Cheng, X.P. Zhang, A.Z. Liang, X.M. Yang. and C.F. Drury. 2006. Impact of soil redistribution in a sloping landscape on carbon sequestration in Northeast. Land Degrad. Dev. 17:89–96.
  19. Haynes, R.J. 2005. Labile organic matter fractions as central components of the quality of agricultural soils: An overview. Adv. In Agron. 85: 221-268.
  20. Houghton, R.A., J.I. House, J. Pongratz, G.R. Vanderwerf, R.S. DeFries, M.C. Hansen, C.Le. Quéré, and N. Ramankutty. 2012. Carbon emissions from land use and land-cover change. Bio. 9:5125-5142.
  21. Hoyos, N., and N.B. Comerford. 2005. Land use and landscape effects on aggregate stability and total carbon of Andisols from the Colombian Andes. Geoderma. 129:268-278.
  22. Jastrow, J.D. 1996. Soil aggregate formation and the accrual of particulate and mineral-associated organic matter. Soil Biol. and Biochem. 28: 656-676.
  23. John, B., T. Yamashita, B. Ludwig, and H. Flessa. 2005. Storage of organic carbon in aggregate and density fractions of silty soils under different types of land use. Geoderma. 128:63–79.
  24. Kalambukattu, J.G., R. Singh, A.K. Patra, and K. Arunkumar. 2013. Soil carbon pools and carbon management index under different land use systems in the Central Himalayan region. Acta Agriculturae Scandinavica, Section B–Soil & Plant Science. 63(3):200–5.
  25. Kamper, D.W and R.C. Rosenau. 1996. Aggregate stability and size distribution. p. 425-442. In A. Klute (ed.). Methods of Soil Analysis. The American Society of Agronomy, Madison, Wisconsin.
  26. Khormali, F., Sh. Ayoubi, F. Kananro Foomani, A. Fatemi, and Kh. Hemmati. 2007. Tea yield and soil properties as affected by slope position and aspect in Lahijan area, Iran. International Journal of Plant Production, 1: 1. 99-111.
  27. Kleber, M., C. Mertz, S. Zikeli, H. Knicker, and R. Jahn. 2004. Changes in surface reactivity and organic matter composition of clay subfractions with duration of fertilizer deprivation. Eur. J. Soil Sci. 55: 381–391.
  28. Kucharik, C.J. 2007. Impact of prairie age and soil order on carbon and nitrogen sequestration. Soil Sci. Soc. Am. J. 71:430–441.
  29. Lal, R. 2004. Soil carbon sequestration impacts on global climate change and food security. Sci. 304: 1623-1627.
  30. Li, Z.W., X.D. Nie, X.L. Chen, Y.M. Lu, W.G. Jiang, and G.M. Zeng. 2015. The effects of land use and landscape position on labile organic carbon and carbon management index in red soil hilly region, southern China. J. Mt. Sci. 12(3):626–36.
  31. Liu, Z., M. Shao, and Y. Wang. 2011. Effect of environmental factors on regional soil organic carbon stocks across the Loess Plateau region, China. Agriculture, Ecosystems and Environment. 142: 184-194.
  32. Lutzow, M.V., I.K. Knabner, K. Ekschmitt, H. Flessa, G. Guggenberger, E. Matzner, and B. Marschner. 2007. SOM fractionation methods: Relevance to functional pools and to stabilization mechanisms. Soil Biol. Biochem. 9: 2183–2207.
  33. Martínez-Mena, M., J. López, M. Almagro, C. Boix-Fayos, and J. Albaladejo. 2008. Effect of water erosion and cultivation on the soil carbon stock in a semiarid area of South-East Spain. Soil Till. Res. 99: 119–129.
  34. Mikha, M.M., and C.W. Rice. 2004. Tillage and manure effects on soil and aggregate-associated carbon and nitrogen. Soil Sci. Soc. Am. J. 68, 809.
  35. Qiu, L., X. Wei, X. Zhang, J. Cheng, W. Gale, C. Guo, and T. Long. 2012. Soil organic carbon losses due to land use change in a semiarid grassland. Plant and Soil. 355: 299-309.
  36. Martin, J.R., J. Alvaro-Fuentes, J. Gonzalo, C. Gil, J.J. Ramos-Miras, J.G. Corbí, and R. Boluda. 2016. Assessment of the soil organic carbon stock in spain. Geoderma. 264: 117-125.
  37. Rolando, J.L., J. Dubeux, W. Perez, D.A. Ramirez, C. Turin, M. Moreno, N. Comerford, V. Mares, S. Garcia, and R. Quiroz. 2017. Soil organic carbon stocks and fractionation under different land uses in the Peruvian High-Andean Puna. Geoderma. 307: 65-72.
  38. Sainepo, B,M., C.K. Gachene, and A. Karuma. 2018. Assessment of soil organic carbon fractions and carbon management index under different land use types in Olesharo catchment, Narok County, Kenya. CrossMark, 13:4.
  39. Schmidt, M.W.I., C. Rumpel, and I. Kogel-Knabner. 1999. Particle size fractionation of soil containing coal and combusted particles. Eur. J. Soil Sci. 50: 512–522.
  40. Tan, Z., R. Lal, L. Owens, and R.C. Izaurralde. 2007. Distribution of light and heavy fractions of soil organic carbon as related to land use and tillage practice. Soil Till. Res. 92:53–59.
  41. Vieira, F.C.B., C. Bayer, J.A. Zanatta, J. Dieckow, J. Mielniczuk, and Z.L. He. 2007. Carbon management index based on physical fractionation of soil organic matter in an Acrisol under long-term no-till cropping systems. Soil Till. Res. 96: 195–204.
  42. Walkley, A., and I.A. Black. 1934. An examination of digestion method for determining soil organic matter and a proposed modification of the chromic acid titration method. Soil Sci. 37: 29-37.
  43. Wang, Q., L. Zhang, L. Li, Y. Bai, J. Cao, and X. Han. 2009. Changes in carbon and nitrogen of Chernozem soil along a cultivation chronosequence in a semi-arid grassland. Eur. J. Soil Sci. 60(6):916–23.
  44. Wen, D., N. He, and J. Zhang. 2016. Dynamics of soil organic carbon and aggregate stability with grazing exclusion in the inner Mongolian grasslands. PloS one, 11(1), p.e0146757.
  45. Winowiecki, L., T.G. Vågen, and J. Huising. 2015. Effects of land cover on ecosystem services in Tanzania: A spatial assessment of soil organic carbon. Geoderma. 263: 274-283.