مقایسه روش‌های ارزیابی کیفیت خاک و ارتباط آن با عملکرد در اراضی چایکاری غرب استان گیلان

نوع مقاله : مقاله پژوهشی

نویسندگان

1 استادیار گروه علوم خاک، دانشکده علوم کشاورزی، دانشگاه گیلان

2 دانش آموخته کارشناسی ارشد گروه علوم خاک، دانشکده علوم کشاورزی، دانشگاه گیلان

3 دانشیار گروه زراعت و اصلاح نباتات، دانشکده علوم کشاورزی دانشگاه گیلان

4 مربی پژوهش، گروه فناوری و مدیریت تولید، پژوهشکده چای، موسسه تحقیقات علوم باغبانی، سازمان تحقیقات آموزش و ترویج کشاورزی، لاهیجان

چکیده

با توجه به افزایش فشار های استفاده از زمین و آسـیب‌پذیری خاک های کشاورزی از نظر زیست محیطی، توسعه یک روش مناسب برای ارزیابی کیفیت خاک به منظور دستیابی به تولید بهینه و پایدار محصول ضروری است. لذا این پژوهش با هدف شناسایی مهم‏ترین ویژگی­های مؤثر بر کیفیت خاک و مقایسه شاخص‌های کیفیت خاک به‌دست آمده از روش‌های مختلف و ارتباط آن با عملکرد چای در غرب استان گیلان صورت گرفت. در مجموع 66 نمونه خاک مرکب از عمق صفر تا 30 سانتی‌متر و برگ سبز چای در کرتی به وسعت 2 متر مربع به مرکزیت محل‌های نمونه‌برداری خاک از بخشی از باغات چای با عملکرد متفاوت برداشت شد. با استفاده از روش تجزیه به مؤلفه­های اصلی(PCA) ، از میان 15 ویژگی موثر بر کیفیت خاک، شش ویژگی شامل پتاسیم قابل جذب، کربن آلی، pH، فسفر قابل جذب، روی قابل جذب و تعداد نماتد به‌عنوان حداقل نشانگرهای مؤثر بر کیفیت خاک انتخاب گردید. سپس کیفیت خاک با استفاده از دو مدل شاخص کیفیت تجمعی (IQI) و شاخص کیفیت نمرو (NQI) به روش‌های نمره‌دهی خطی و غیرخطی (LS و NLS) و هرکدام در دو مجموعه کل داده‌ها (TDS) و داده‌های حداقل (MDS) ارزیابی شد. نتایج نشان داد که میانگین شاخص کیفیت خاک به جز شاخص‌های IQI-NLSMDS و NQI-NLSMDS، در باغات با عملکرد بالا به طور معنی‌داری بیش­تر از باغات با عملکرد پایین بود. ارزیابی کیفیت خاک باغات چای نشان داد که روش‌های نمرده‌دهی خطی بر روش‌های غیرخطی برتری دارند، به‌طوری‌که شاخص‌های IQI-LS و NQI-LS برای هر دو مجموعه TDS (به ترتیب 55/0= R2و 54/0=R2) و MDS (به ترتیب 45/0= R2و 46/0=R2) همبستگی بیش­تری با عملکرد چای نسبت به سایر شاخص‌ها نشان دادند. همچنین همبستگی بین دو مجموعه TDS و MDS برای شاخص IQI-LS (80/0= R2)، بیش­تر از شاخص NQI-LS (59/0= R2) بود. 

کلیدواژه‌ها


عنوان مقاله [English]

Comparison of Soil Quality Evaluation Methods and Their Relationships with Tea Yield in West Guilan Province

نویسندگان [English]

  • Nafiseh Yaghmaeian Mahabadi 1
  • Hoora Fayyaz 2
  • Atefeh Sabouri 3
  • Ahmad Shirinfekr 4
1 Assistant Professor, Department of Soil Science, Faculty of Agricultural Sciences, University of Guilan, Iran
2 MSc., Department of Soil Science, Faculty of Agricultural Sciences, University of Guilan, Iran
3 Associated Professor, Department of Agronomy and Plant Breeding, Faculty of Agricultural Sciences, University of Guilan, Iran
4 Agronomy& Technology Department, Tea Research Center, Horticultural Sciences Research Institute, Agricultural Research, Education and Extension Organization (AREEO), Lahijan, Iran
چکیده [English]

Developing an appropriate methodology to evaluate soil quality is urgent and has great implications in sustainable agricultural production. This study was carried out with the aim of determining the minimum data set (MDS) for soil quality evaluation and the comparison of soil quality evaluation methodsin tea cultivation with different productivities in west Guilan province. Sixty-six soil samples were collected from 0 to 30 cm depth. The green tea leaves were harvested at a 2 m2 plot at each site. In this research, using the principal component analysis (PCA) method, among 15 physical, chemical and biological soil indicators as total data set (TDS), available potassium, organic carbon, pH, available phosphorus, available zinc and nematode were determined as the MDS. Then, the soil quality of tea cultivation with different productivities was evaluated by Integrated Quality Index(IQI) and Nemoro Quality Index (NQI) using two linear and non-linear scoring methods (LS and NLS) and two soil indicator selection approaches, a Total Data Set (TDS) and a Minimum Data Set (MDS). The results showed that all mean soil quality indices of the high productivity tea cultivationexcept IQI-NLSMDSand NQI-NLSMDS were significantly higher than low productivity tea cultivation. It was found that linear scoring methods are superior to non-linear. So that, the correlations between soil quality indices and crop yields for the IQI-LS and NQI-LS methods were Stronger than in the other methods in both TDS (R2=0.55 and 0.54, respectively) and MDS (R2=0.45 and 0.46, respectively). The correlation between TDS and MDS evaluated by the IQI–LS (R2=0.80) were higher than that by NQI–LS (R2=0.59)

کلیدواژه‌ها [English]

  • Integrated quality index
  • Nemoro quality index
  • Scoring methods
  • PCA
  1. همتی، س.، یغمائیان مهابادی، ن.، فرهنگی، م. و صبوری، ع. 1398. ارزیابی شاخص‌های کیفیت خاک و ارتباط آن با عملکرد برنج در شالیزار‌های مرکزی استان گیلان. نشریه مدیریت خاک و تولید پایدار، 9 (1): 135-150.
  2. سراجی، ع.، پورجم، ا.، تنهامعافی، ز. و صفایی، ن. 1386. مطالعه زیسـت‌شناسـی و دینامیـک جمعیـت نماتـد مولـد زخـم ریشـه چـای (Pratylenchus loosi) در ایـران . فصلنامه علمی - پژوهشی بیماری‌های گیاهی، 43 (1): 98-115.
  3. نوری، ن.، رستمی نیا، م.، کشاورزی, ع. و رحمانی، ا. (1398). 'ارزیابی کمّی و پهنه‌بندی پراکنش مکانی شاخص کیفیت خاک در بخشی از اراضی خشک و نیمه‌خشک غرب ایران (مطالعه موردی: منطقه کَنِ ‌سرخ، استان ایلام). مجله تحقیقات آب و خاک ایران، 50 (7): 1701-1719.
  4. Amirinejad, A. A., Kamble, K., Aggarwal, P., Chakraborty, D., Pradhan, S., & Mittal, R. B. 2011. Assessment and mapping of spatial variation of soil physical health in a farm. Geoderma, 160(3-4), 292-303.
  5. Anderson, J.P.E. 1982. Soil respiration. In: A.L. Page and R.H. Mille (Eds.), Methods of Soil Analysis, Part 2, Chemical and Micro Biological Properties, American Society of Agronomy, Madison, WI, USA. pp. 831-871.
  6. Andrews, S. S., Karlen, D. L., & Mitchell, J. P. 2002. A comparison of soil quality indexing methods for vegetable production systems in Northern California. Agriculture, ecosystems & environment, 90(1), 25-45.
  7. Armenise, E., Redmile-Gordon, M. A., Stellacci, A. M., Ciccarese, A., & Rubino, P. 2013. Developing a soil quality index to compare soil fitness for agricultural use under different managements in the Mediterranean environment. Soil and Tillage Research, 130, 91-98.
  8. Askari, M. S., & Holden, N. M. 2014. Indices for quantitative evaluation of soil quality under grassland management. Geoderma, 230, 131-142.
  9. Bhaduri, D., & Purakayastha, T. J. 2014. Long-term tillage, water and nutrient management in rice–wheat cropping system: Assessment and response of soil quality. Soil and Tillage Research, 144, 83-95.
  10. Baruah, N., Medhi, B. K., Borah, N., Baruah, A. M., & Saikia, G. K. 2017. Effect of long term tea cultivation in soil quality in deep, fine loamy, well drained soil of Jorhat district, Assam. Journal of Soil and Water Conservation, 16(4), 347-355.
  11. Bi, C. J., Chen, Z. L., Wang, J. and Zhou, D. 2013. Quantitative assessment of soil health under different planting patterns and soil types. Pedosphere, 23(2), 194-204
  12. Biswas, S., Hazra, G. C., Purakayastha, T. J., Saha, N., Mitran, T., Roy, S. S. & Mandal, B. 2017. Establishment of critical limits of indicators and indices of soil quality in rice-rice cropping systems under different soil orders. Geoderma, 292, 34-48.
  13. Blake, G. R., & Hartge, K. H. 1986. Bulk density.  In: A. Klute (Ed.), Methods of Soil Analysis, Part 1. Physical and Mineralogical Methods, American Society of Agronomy, Madison, WI, USA. pp. 363-375.
  14. Cambardella, C. A., Moorman, T. B., Andrews, S. S., & Karlen, D. L. 2004. Watershed-scale assessment of soil quality in the loess hills of southwest Iowa. Soil and Tillage Research, 78(2), 237-247.
  15. Cao, Z. H., & Zhou, J. M. 2008. Soil quality of China.Science Press, Beijing.
  16. Carter, M. R. 2002. Soil quality for sustainable land management: organic matter and aggregation interactions that maintain soil functions. Agronomy journal, 94(1), 38-47.
  17. Cherubin, M.R., Karlen, D.L., Cerri, C.E.P., Franco, A.L.C., Tormena, C.A., Davies, C.A., & Cerri, C.C. 2016. Soil quality indexing strategies for evaluating sugarcane expansion in Brazil. PLoS ONE 11:3. 1-26.
  18. Doran, J. W. & Parkin, T. B. 1994. Defining and assessing soil quality. In: Doran, J. W., Coleman, D. C., Bezdicek, D. F. and Stewart, B. A. (Eds.), Defining Soil Quality for a Sustainable Environment. Soil Science Society of America, Inc., Special Publication, Madison, WI, USA, pp. 3–21.
  19. Fu, W., Tunney, H., & Zhang, C. 2010. Spatial variation of soil nutrients in a dairy farm and its implications for site-specific fertilizer application. Soil and Tillage Research, 106(2), 185-193.
  20. Gee, G. W., & Bauder, J. M. 1986. Particle-size analysis. In: A., Klute (Ed.). Methods of Soil Analysis. Part 1: Physical and Mineralogical Methods. American Society of Agronomy. Soil Science Society of America, Madison, WI. pp. 383-411.
  21. Gholoubi, A., Emami, H. & Alizadeh, A., 2018. Soil quality change 50 years after forestland conversion to tea farming. Soil Research, 56(5), 509-517.
  22. Glover, J. D., Reganold, J. P., & Andrews, P. K. 2000. Systematic method for rating soil quality of conventional, organic, and integrated apple orchards in Washington State. Agriculture, ecosystems & environment, 80(1-2), 29-45.
  23. Govaerts, B., Sayre, K. D., & Deckers, J. 2006. A minimum data set for soil quality assessment of wheat and maize cropping in the highlands of Mexico. Soil and tillage research, 87(2), 163-174.
  24. Guo, L., Sun, Z., Ouyang, Z., Han, D., & Li, F. 2017. A comparison of soil quality evaluation methods for Fluvisol along the lower Yellow River. Catena, 152, 135-143.
  25. Hesse, P. R. 1971. A text book of soil chemical analysis. John Murray. London. 556 p.
  26. Imaz, I., Rubio-Martínez, M., García-Fernández, L., García, F., Ruiz-Molina, D., Hernando, J. & Maspoch, D. 2010. Coordination polymer particles as potential drug delivery systems. Chemical communications, 46(26), 4737-4739.
  27. Jenkins, W. R. B. 1964. A rapid centrifugal-flotation technique for separating nematodes from soil. Plant disease reporter, 48(9).
  28. Kaiser, H. F. 1960. The application of electronic computers to factor analysis. Educational and psychological measurement, 20(1), 141-151.
  29. Kemper, W. D. & Rosenau, R. C. 1986. Aggregate stability and size distribution. In: A., Klute (Ed.). Methods of Soil Analysis. Part 1: Physical and Mineralogical Methods. American Society of Agronomy. Soil Science Society of America, Madison, WI. pp. 425-442.
  30. Knudsen, D., Peterson, G. A. & Pratt, P. F. 1982. Lithium, sodium and potassium. In: A.L. Page (Ed.). Methods of Soil Analysis. Part 2. America Society of Agronomy. Madison, WI. pp. 225-246.
  31. Li, P., Shi, K., Wang, Y., Kong, D., Liu, T., Jiao, J. & Hu, F. 2019. Soil quality assessment of wheat-maize cropping system with different productivities in China: Establishing a minimum data set. Soil and Tillage Research, 190, 31-40.
  32. Lindsay, W. L., & Norvell, W. A. 1978. Development of a DTPA soil test for zinc, iron, manganese, and copper. Soil Science Society of America Journal, 42(3), 421-428.
  33. Liu, Z., Zhou, W., Shen, J., Li, S., He, P., & Liang, G. 2014. Soil quality assessment of Albic soils with different productivities for eastern China. Soil and Tillage Research, 140, 74-81.
  34. Masto, R. E., Chhonkar, P. K., Singh, D., & Patra, A. K. 2007. Soil quality response to long-term nutrient and crop management on a semi-arid Inceptisol. Agriculture, Ecosystems and Environment, 118(1-4), 130-142.
  35. Mukherjee, A., & Lal, R. 2014. Comparison of soil quality index using three methods. PLOS ONE, 9(8), e105981.
  36. Nabiollahi, K., Golmohamadi, F., Taghizadeh-Mehrjardi, R., Kerry, R., & Davari, M. 2018. Assessing the effects of slope gradient and land use change on soil quality degradation through digital mapping of soil quality indices and soil loss rate. Geoderma, 318, 16-28.
  37. Ngo-Mbogba, M., Yemefack, M., & Nyeck, B. 2015. Assessing soil quality under different land cover types within shifting agriculture in South Cameroon. Soil and Tillage Research, 150, 124-131.
  38. Olsen, S. R., Cole, C. V., Watanabe, F. S. & Dean, L. A. 1954. Estimation of Available Phosphorous in Soils by Extraction with Sodium Bicarbonate. U.S. Department of Agriculture: Washington, D.C., USDA Circ. 939.
  39. Qi, Y., Darilek, J. L., Huang, B., Zhao, Y., Sun, W., & Gu, Z. 2009. Evaluating soil quality indices in an agricultural region of Jiangsu Province, China. Geoderma, 149(3-4), 325-334.
  40. Rahmanipour, F., Marzaioli, R., Bahrami, H. A., Fereidouni, Z., & Bandarabadi, S. R. 2014. Assessment of soil quality indices in agricultural lands of Qazvin Province, Iran. Ecological Indicators, 40, 19-26.
  41. Raiesi, F., & Kabiri, V. 2016. Identification of soil quality indicators for assessing the effect of different tillage practices through a soil quality index in a semi-arid environment. Ecological Indicators, 71, 198-207.
  42. Ray, S. K., & Mukhopadhyay, D. 2012. A study on physicochemical properties of soils under different tea growing regions of West Bengal (India). International Journal of Agriculture Sciences, 4(8), 325.
  43. Ruan, J., Ma, L., & Shi, Y. 2013. Potassium management in tea plantations: Its uptake by field plants, status in soils, and efficacy on yields and quality of teas in China. Journal of Plant Nutrition and Soil Science, 176(3), 450-459.
  44. Shukla, M. K., Lal, R., & Ebinger, M. 2006. Determining soil quality indicators by factor analysis. Soil and Tillage Research, 87(2), 194-204.
  45. Svoray, T., Hassid, I., Atkinson, P. M., Moebius-Clune, B. N., & van Es, H. M. 2015. Mapping soil health over large agriculturally important areas. Soil Science Society of America Journal, 79(5), 1420-1434.
  46. Swanepoel, P. A., Du Preez, C. C., Botha, P. R., Snyman, H. A., & Habig, J. 2014. Soil quality characteristics of kikuyu–ryegrass pastures in South Africa. Geoderma, 232, 589-599.
  47. Torbert, H. A., Krueger, E., & Kurtener, D. 2008. Soil quality assessment using fuzzy modeling. International Agrophysics, 22(4), 365-370.
  48. Vasu, D., Singh, S. K., Ray, S. K., Duraisami, V. P., Tiwary, P., Chandran, P., & Anantwar, S. G. 2016. Soil quality index (SQI) as a tool to evaluate crop productivity in semi-arid Deccan plateau, India. Geoderma, 282, 70-79.
  49. Walkley, A., & Black, I. A. 1934. An examination of the Degtjareff method for determining soil organic matter, and a proposed modification of the chromic acid titration method. Soil Science, 37(1), 29-38.
  50. Zhang, X. Y., Yue-Yu, S. U. I., Zhang, X. D., Kai, M. E. N. G., & Herbert, S. J. 2007. Spatial variability of nutrient properties in black soil of northeast China. Pedosphere, 17(1), 19-29.