برآورد سرعت آستانه فرسایش بادی با روش طیف‌سنجی در مناطق مستعد تولید ریزگرد در خوزستان

نوع مقاله : مقاله پژوهشی

نویسندگان

1 دانش‌آموخته دکتری، گروه علوم و مهندسی خاک، دانشکده کشاورزی، دانشگاه شهید چمران اهواز، اهواز، ایران

2 استاد، گروه علوم و مهندسی خاک، دانشکده کشاورزی، دانشگاه شهید چمران اهواز، اهواز، ایران و عضو مرکز پژوهشی منطقه‌ای ریزگردها، دانشگاه شهید چمران اهواز، اهواز، ایران

3 دانشیار، هیئت علمی پژوهشی، پژوهشکده حفاظت خاک و آبخیزداری، سازمان تحقیقات، آموزش و ترویج کشاورزی، تهران، ایران

4 دانشیار، گروه خاکشناسی، دانشکده کشاورزی، دانشگاه تربیت مدرس، تهران، ایران

چکیده

سرعت آستانه فرسایش یک عامل مهم در ارزیابی فرسایش‌پذیری خاک یک منطقه به شمار می­رود که اندازه‌گیری آن زمان‌بر و پرهزینه است. استفاده از طیف بازتابی خاک در برآورد سرعت آستانه فرسایش، سبب کاهش هزینه و افزایش سرعت عمل می‌شود. هدف از این پژوهش مقایسه کارایی و دقت مدل‌های رگرسیونی حداقل مربعات جزئی (PLSR)، ماشین بردار پشتیبان (SVR) و شبکه عصبی (ANN) در برآورد سرعت آستانه فرسایش در مناطق مستعد تولید گرد و غبار استان خوزستان است. برای این منظور ابتدا تعداد 91 نمونه خاک از قسمت‌های مرکزی و جنوبی مناطق مستعد تولید ریزگرد استان جمع‌آوری شد و سرعت آستانه فرسایش با استفاده از تونل باد تعیین گردید. در ادامه طیف بازتابی نمونه‌های خاک با دستگاه طیف‌سنج به دست آمد. روش‌های پیش‌پردازش بر روی طیف اصلی اجرا شد و مدل‌سازی با استفاده از سه مدل PLSR، SVR و ANN انجام گرفت. نتایج نشان داد که میانگین سرعت آستانه فرسایش در منطقه 7/9  متر بر ثانیه و حداقل آن 25/5  متر بر ثانیه به دست آمد، همچنین سرعت آستانه همبستگی معنی‌داری با سدیم محلول(58/0- =r) و نسبت جذب سدیمی (48/0- =r) در سطح احتمال 5 درصد نشان داد. مدل ANN در پیش‌پردازش مشتق دوم بهترین دقت برآورد (52/2= PRD) و مدل SVR در طیف اصلی (56/0= PRD) کمترین دقت برآورد را داشت. در پایان طول موج کلیدی سرعت آستانه فرسایش منطقه در محدوده‌های 1850 و 1930 نانومتر به دست آمد.با توجه به همبستگی بین بازتاب خاک با سرعت آستانه فرسایش (76/0=r)، از این روش می‌توان برای ارزیابی فرسایش پذیری مناطق مستعد تولید ریزگرد استفاده کرد.

کلیدواژه‌ها

موضوعات


عنوان مقاله [English]

Estimation of Wind Erosion Threshold Friction Velocity in Areas Prone to Dust Production by Spectroscopy in Khuzestan

نویسندگان [English]

  • Mansour Chatrenour 1
  • Ahmad Landi 2
  • Ali Akbar noroozi 3
  • Hosseinali Bahrami 4
1 PhD Graduate, Department of Soil Science and Engineering, Faculty of Agriculture, Shahid Chamran University of Ahvaz, Ahvaz, Iran
2 Professor, Department of Soil Science and Engineering, Faculty of Agriculture, Shahid Chamran University of Ahvaz, Ahvaz, Iran, and Dust Research Center, Shahid Chamran University of Ahvaz, Ahvaz, Iran
3 Associate Professor, Soil Conservation and Watershed Management Research Institute, Agricultural Research, Education and Extension Organization (AREEO), Tehran, Iran
4 Associate Professor, Department of Soil Science, Faculty of Agriculture, Tarbiat Modares University, Tehran, Iran
چکیده [English]

Threshold friction speed is an important factor for assessing the soil erodibility, but its measurement is time consuming and costly. Estimating threshold friction velocity by use of soil reflectance increases operating speed and reduces cost. The aim of this study was to compare the efficiency and accuracy of partial least squares regression (PLSR), support vector regression (SVR) and artificial neural network (ANN) regression models in estimating the threshold friction velocity in dust-prone areas of Khuzestan Province. For this purpose, 91 soil samples were collected from the central and southern parts of dust-prone areas of the province and the threshold friction velocity was determined using wind tunnels. Then, the reflectance spectra of soil samples were obtained with a spectrometer. Pre-processing methods were performed on the main spectrum and modeling was performed using, PLSR, SVR and ANN models. The results showed that the threshold friction velocity in the region was 9.7 m/s and the minimum was 5.25 m/s.  Also, the threshold friction velocity was significantly (p<0.05) correlated with dissolved sodium (r= -0.58) and sodium adsorption ratio (R= -0.48). The ANN model had the best estimation accuracy in the second derivative preprocessing (PRD = 2.52) and the SVR model had the lowest estimation accuracy in the main spectrum (PRD = 0.56). Finally, the key wavelength of the threshold friction velocity was in the range of 1850 and 1930 nm. Because of the soil reflectance correlation with threshold friction velocity (r=0.76), the spectroscopy method can be used to assess the soil erodibility in areas prone to dust production.

کلیدواژه‌ها [English]

  • Erodibility
  • Key Wavelength
  • Preprocessing
  • Support Vector Machine
  1. چترنور, م., لندی, ا., فرخیان فیروزی, ا., نوروزی, ع. ا., و بهرامی ح. 1398. استفاده از روش طیف‌سنجی مرئی-مادون قرمز نزدیک در مدل‌سازی شوری خاک اراضی مستعد تولید ریزگرد استان خوزستان. تحقیقات آب و خاک ایران, 50(8), 1951-1962.
  2. چترنور, م., لندی, ا., فرخیان فیروزی, ا., نوروزی, ع. ا. و بهرامی, ح. 1399. مدل‌سازی رفتار طیفی بافت خاک در کانون‌های ریزگرد استان خوزستان با استفاده از تصاویر ابر طیفی و مدل جنگل تصادفی. زمین شناسی کاربردی پیشرفته, 9(4), 466-479.
  3. چترنور, م., لندی, ا., فرخیان فیروزی, ا., نوروزی, ع. ا. و بهرامی, ح. 1399. کاربرد طیف‌سنجی مرئی- مادون‌قرمز در کمی سازی میزان گچ خاک در کانون‌های مستعد تولید ریزگرد استان خوزستان. مجله تحقیقات کاربردی, 8(3), 13-1.
  4. چترنور, م., لندی, ا., فرخیان فیروزی, ا., نوروزی, ع. ا. و بهرامی, ح. 1399. بررسی ویژگی های جذبی کربن آلی خاک با روش طیف سنجی آزمایشگاهی در مناطق مستعد تولید ریزگرد استان خوزستان. نشریه مدیریت خاک و تولید پایدار, 1(10), 81-65.
  5. عظیم زاده، ح، ر. اختصاصی، م ، ر. حاتمی، م. اخوان قالیباف، م. 1381، مطالعه تأثیرات خصوصیات فیزیکی و شیمیایی خاک در شاخص فرسایش پذیری بادی خاک و ارائه مدل جهت پیشگویی آن در دشت یزد- اردکان سال نهم شماره اول.
  6. محمود آبادی، م.، دهقانی، ف. و عظیم‌زاده، ح. ر. 1390. مطالعه اثر توزیع اندازه ذرات خاک بر شدت فرسایش بادی. مجله مدیریت خاک و تولید پایدار. 1(1): 81-98.
  7. محمود آبادی، م. و زمانی، س. 1391. بررسی تأثیر سرعت باد و توزیع اندازه ذرات خاک بر مکانیسم-های حمل رسوب ناشی از فرسایش بادی. مهندسی و مدیریت آبخیز. 4(3): 141-151.
  8. مهرابی, ش., سلطانی, س., و جعفری, ر. 1394. بررسی رابطه بین پارامترهای اقلیمی و وقوع ریزگردها (مطالعه موردی: استان خوزستان). علوم آب و خاک (علوم و فنون کشاورزی و منابع طبیعی), 19(71).
  9. نوروزی، ع، ا. 1395. ارزیابی و مقایسه عملکرد روش های آشکار سازی در شناسایی پهنه های فرسایش بادی با استفاده از تصاویر لندست 8، مرکز و شمال غرب استان خوزستان. مجله پژوهش های فرسایش محیطی. جلد 7. شماره 1. ص: 89-104.Azimzadeh, H. R.
  10. Ekhtesasi, M.R., Hatami, H., Akhavan. M., 2002. Wind erosion: erodibility relation to soil physical and chemical properties in Iran central plain (Yazd-Ardakan plain - case study). Iran.  Journal of Agic. Sci. Natur. Resour.
  11. Bashour, I.I. and Sayegh, A.H. 2007. Methods of analysis for soils of arid and semi-arid regions: FAO.
  12. Belnap, J., Phillips, S.L., Herrick, J. and Johansen, J. 2007. Wind erodibility of soils at Fort Irwin, California (Mojave Desert), USA, before and after trampling disturbance: implications for land management. Earth Surface Processes and Landforms: The Journal of the British Geomorphological Research Group,32 (1):78-84
  13. Breshears, D.D., Whicker, J.J., Johansen, M.P. and Pinder, J.E. 2003. Wind and water erosion and transport in semi‐arid shrubland, grassland and forest ecosystems: Quantifying dominance of horizontal wind‐driven transport. Earth Surface Processes and Landforms,28(11): 1189-1209.
  14. Caudill, M. (1987). Neural networks primer, part I. AI expert, 2(12): 46-52
  15. Chang, C.-W., Laird, D.A., Mausbach, M.J. and Hurburgh, C.R.2001 . Near-infrared reflectance spectroscopy–principal components regression analyses of soil properties. Soil Science Society of America Journal, 65 (2) 480-490
  16. Clark, R.N., King, T.V., Klejwa, M., Swayze, G.A. and Vergo, N. 1990. High spectral resolution reflectance spectroscopy of minerals. Journal of Geophysical Research: Solid Earth, 95(B8): 12653-12680
  17. Colazo, J.C. and Buschiazzo, D.E. 2010. Soil dry aggregate stability and wind erodible fraction in a semiarid environment of Argentina. Geoderma, 159 (1)): 228-236
  18. Cornelis, W.M., Gabriels, D. and Hartmann, R. 2004. A conceptual model to predict the deflation threshold shear velocity as affected by near-surface soil water. Soil Science Society of America Journal, 68 (4): 1154-1161.
  19. Curcio, D., Ciraolo, G., D’Asaro, F. and Minacapilli, M.2013. Prediction of soil texture distributions using VNIR-SWIR reflectance spectroscopy. Procedia Environmental Sciences, 19: 494-503.
  20. Dardenne, P., Sinnaeve, G. and Baeten, V. 2000. Multivariate calibration and chemometrics for near infrared spectroscopy: which method? Journal of Near Infrared Spectroscopy, 8(4): 229-237.
  21. Demuth, H. and Beale, M. 1998. Neural network toolbox: For use with MATLAB, Natick, MA: The Math Works. Inc.. OpenURL.
  22. Dong, Z., Liu, X. and Wang, X. 2002. Wind initiation thresholds of the moistened sands. Geophysical Research Letters, 29 .(12)
  23. Dotto, A.C., Dalmolin, R.S.D., Pedron, F.d.A., Caten, A.t. and Ruiz, L.F.C. 2014. Digital mapping of soil properties: particle size and soil organic matter by diffuse reflectance spectroscopy. Revista Brasileira de Ciência do Solo, 38 (6): 1663-1671.
  24. Farifteh, J., Van der Meer, F., Atzberger, C. and Carranza, E. 2007. Quantitative analysis of salt-affected soil reflectance spectra: A comparison of two adaptive methods (PLSR and ANN). Remote Sensing of Environment, 110 (1): 59-78.
  25. Fearn, T., Riccioli, C., Garrido-Varo, A. and Guerrero-Ginel, J.E. 2009. On the geometry of SNV and MSC. Chemometrics and Intelligent Laboratory Systems, 96 (1): 22-26.
  26. Fister, W. and Ries, J.B. 2009. Wind erosion in the central Ebro Basin under changing land use management. Field experiments with a portable wind tunnel. Journal of Arid Environments,73  )  (11) (1004-996)
  27. Harrison, T.N. 2012. Experimental VNIR reflectance spectroscopy of gypsum dehydration: Investigating the gypsum to bassanite transition. American Mineralogist, 97(4): 598-609.
  28. Ji, W., Adamchuk, V.I., Biswas, A., Dhawale, N.M., Sudarsan, B., Zhang, Y., Rossel, R.A.V. and Shi, Z. 2016. Assessment of soil properties in situ using a prototype portable MIR spectrometer in two agricultural fields. biosystems engineering, 152: 14-27.
  29. Li, J., Flagg, C., Okin, G.S., Painter, T.H., Dintwe, K. and Belnap, J. 2015. On the prediction of threshold friction velocity of wind erosion using soil reflectance spectroscopy. Aeolian Research, 19: 129- 136
  30. Liu, B., Qu, J., Ning, D., Gao, Y., Zu, R. and An, Z. 2014. Grain-size study of aeolian sediments found east of Kumtagh Desert. Aeolian Research, 13: 1-6
  31. Liu, L., Wang, J., Li, X., Liu, Y., Ta, W. and Peng, H. 1998. Determination of erodible particles on cultivated soils by wind tunnel simulation. Chinese Science Bulletin, 43(19): 1646-1651.
  32. Mahmoudabadi. M., Zamani. S., 2012. Effect of wind speed and soil particle size distribution on sediment ‎transport mechanisms due to wind erosion. Iran Journal of Watershed Engineering and Management, 6, 141-145.
  33. Mahmoodabadi. M., Dehghani. F., Azimzadeh. H.R., 2011. Effect of soil particle size distribution on wind erosion rate. Search Results. Electronic Iran journal of soil management and sustainable. Page(s) 81 To 97.
  34. Mohamed, E., Saleh, A., Belal, A. and Gad, A.A. 2018. Application of near-infrared reflectance for quantitative assessment of soil properties. The Egyptian Journal of Remote Sensing and Space Science, 21(1): 1-14.
  35. Morgan, R.P.C. 2009. Soil erosion and conservation: John Wiley & Sons.
  36. Nawar, S., Buddenbaum, H., Hill, J. and Kozak, J. (2014). Modeling and mapping of soil salinity with reflectance spectroscopy and landsat data using two quantitative methods (PLSR and MARS). Remote Sensing, 6(11): 10813-10834.
  37. Nawar, S., Buddenbaum, H., Hill, J., Kozak, J. and Mouazen, A.M. 2016. Estimating the soil clay content and organic matter by means of different calibration methods of vis-NIR diffuse reflectance spectroscopy. Soil and Tillage Research, 155: 510-522.
  38. Nocita, M., Stevens, A., Toth, G., Panagos, P., van Wesemael, B. and Montanarella, L. 2014. Prediction of soil organic carbon content by diffuse reflectance spectroscopy using a local partial least square regression approach. Soil Biology and Biochemistry, 68: 337-347.
  39. Pu, R., Ge, S., Kelly, N. and Gong, P. 2003. Spectral absorption features as indicators of water status in coast live oak (Quercus agrifolia) leaves. International Journal of Remote Sensing, 24(9): 1799-1810.
  40. Reeves Iii, J., McCarty, G. and Mimmo, T. 2002. The potential of diffuse reflectance spectroscopy for the determination of carbon inventories in soils. Environmental pollution, 116: S277-S284.
  41. Rinnan, Å., Van Den Berg, F. and Engelsen, S.B. 2009. Review of the most common pre-processing techniques for near-infrared spectra. TrAC Trends in Analytical Chemistry, 28(10): 1201-1222.
  42. Rossel, R.V. and Behrens, T. 2010. Using data mining to model and interpret soil diffuse reflectance spectra. Geoderma, 158(1-2): 45-54.
  43. Rossel, R.V., Cattle, S.R., Ortega, A. and Fouad, Y. 2009. In situ measurements of soil colour, mineral composition and clay content by vis–NIR spectroscopy. Geoderma, 150(3-4): 253-266
  44. Savitzky, A. and Golay, M.J. 1964. Smoothing and differentiation of data by simplified least squares procedures. Analytical Chemistry, 36(8): 1627-1639
  45. Seidel, M., Hutengs, C., Ludwig, B., Thiele-Bruhn, S. and Vohland, M. 2019. Strategies for the efficient estimation of soil organic carbon at the field scale with vis-NIR spectroscopy: Spectral libraries and spiking vs. local calibrations. Geoderma, 354: 113856.
  46. Shao, Y. and Lu, H. 2000. A simple expression for wind erosion threshold friction velocity. Journal of Geophysical Research: Atmospheres, 105(D17): 22437-22443.
  47. Sjöström, M., Wold, S., Lindberg, W., Persson, J.-Å. and Martens, H. 1986. A multivariate calibration problem in analytical chemistry solved by partial least-squares models in latent variables. Analytica Chimica Acta, 150: 61-70.
  48. Smola, A.J. and Schölkopf, B. 2004. A tutorial on support vector regression. Statistics and computing, 14(3): 199-222.
  49. Stenberg, B. 2010. Effects of soil sample pretreatments and standardised rewetting as interacted with sand classes on Vis-NIR predictions of clay and soil organic carbon. Geoderma, 158(1): 15-22.
  50. Stoner, E.R. and Baumgardner, M. 1981. Characteristic Variations in Reflectance of Surface Soils 1. Soil Science Society of America Journal, 45(6): 1161-1165
  51. Suter-Burri, K., Gromke, C., Leonard, K.C. and Graf, F. 2013. Spatial patterns of aeolian sediment deposition in vegetation canopies: Observations from wind tunnel experiments using colored sand. Aeolian Research, 8: 65-73.
  52. Tan, L., Zhang, W., Liu, B., An, Z. and Li, J.2013. Simulation of wind velocity reduction effect of gravel beds in a mobile wind tunnel atop the Mogao Grottoes of Dunhuang, China. Engineering Geology, 159: 67-75.
  53. Vapnik, V. and Vapnik, V. 1998. Statistical learning theory Wiley. New York: 156-160.
  54. Vasques, G., Grunwald, S. and Sickman, J. 2008. Comparison of multivariate methods for inferential modeling of soil carbon using visible/near-infrared spectra. Geoderma, 146(1-2): 14-25.
  55. Walkley, A. and Black, I.A. 1934. An examination of the Degtjareff method for determining soil organic matter, and a proposed modification of the chromic acid titration method. Soil Science, 37(1): 29-38.
  56. Wang, J., Ding, J., Abulimiti, A. and Cai, L. 2018. Quantitative estimation of soil salinity by means of different modeling methods and visible-near infrared (VIS–NIR) spectroscopy, Ebinur Lake Wetland, Northwest China. PeerJ, 6: e4703.
  57. Wang, J., Li, Z., Qin, X., Yang, X., Gao, Z. and Qin, Q. 2014. Hyperspectral predicting model of soil salinity in Tianjin costal area using partial least square regression. Paper presented at the Geoscience and Remote Sensing Symposium (IGARSS), 2014 IEEE International.
  58. Xu, C., Zeng, W., Huang, J., Wu, J. and van Leeuwen, W. 2016. Prediction of soil moisture content and soil salt concentration from hyperspectral laboratory and field data. Remote Sensing, 8(1): 42.
  59. Zeng, W., Zhang, D., Fang, Y., Wu, J. and Huang, J. 2018. Comparison of partial least square regression, support vector machine, and deep-learning techniques for estimating soil salinity from hyperspectral data. Journal of Applied Remote Sensing, 12(2): 022204.
  60. Zhu, B.-Q., Yu, J.-J., Rioual, P. and Ren, X.-Z. 2014. Particle size variation of aeolian dune deposits in the lower reaches of the Heihe River basin, China. Sedimentary Geology, 301: 54-69.
  61. Zobeck, T. and Van Pelt, R. (2015). Wind erosion. Publications from USDA-ARS/UNL Faculty. Paper 1409.
  62. Zobeck, T.M. 1991. Soil properties affecting wind erosion. Journal of Soil and Water Conservation, 46(2): 112-118.
  63. Zobeck, T.M., Sterk, G., Funk, R., Rajot, J.L., Stout, J.E. and Van Pelt, R.S. 2003. Measurement and data analysis methods for field‐scale wind erosion studies and model validation. Earth Surface Processes and Landforms, 28(11): 1136-188.