ارزیابی و مدل‌سازی شوری خاک با استفاده از سنجش از دور، مدل رگرسیون و جنگل تصادفی

نوع مقاله : مقاله پژوهشی

نویسندگان

1 دانشجوی کارشناسی ارشد آلودگی محیط زیست، دانشگاه آزاد اسلامی، واحد اصفهان (خوراسگان)، اصفهان، ایران

2 استادیار گروه محیط زیست، دانشگاه آزاد اسلامی واحد اصفهان (خوراسگان)، اصفهان، ایران، مرکز تحقیقات پسماند و پساب، دانشگاه آزاد اسلامی واحد اصفهان (خوراسگان)، اصفهان، ایران

چکیده

شور شدن خاک یکی از تهدیدات مهم جهان کنونی است که با تشدید فرآیند بیابان­زایی و تخریب زمین ارمغانی جز کاهش بهره‌وری خاک نخواهد داشت. از آنجا که تجزیه و تحلیل آزمایشگاهی این پارامتر، عموما وقت­گیر و در مقیاس­های وسیع هزینه بر است، تلاش­های بسیاری برای مطالعه شوری با استفاده از روش سنجش از دور صورت گرفته است. در این راستا، مطالعه حاضر نیز به بررسی توان سنجش از دور در پیش­بینی شوری سطحی خاک در شرق شهرستان لنجان پرداخته است. نقاط مرجع شوری با استفاده از تحلیل 50 نمونه خاک سطحی برداشت شده به روش تصادفی مشخص گردید. شاخص­های ماهواره­ای شامل DVI، NDVI، EVI، MSAVI، SAVI، RVI، NDWI، SI1، SI2، SI3 و SBI از تصویر ماهواره­ی لندست-8 (ردیف و گذر 164 و 37) برداشت شده در تاریخ 13 آبان 1398 استخراج گردید و به همراه سه شاخص توپوگرافیکی ارتفاع، شیب و شاخص رطوبت توپوگرافیکی (TWI) به مدل­رگرسیون خطی چندگانه و جنگل تصادفی معرفی شد. مدل رگرسیون خطی با استفاده از باند 6، RVI، NDVI، ارتفاع و TWI و مقدار p-value برابر با 049/0 تولید گردید. در مدل جنگل تصادفی نیز باند 7، شیب، باند 5 و ارتفاع از جمله مهمترین پارامترهای تاثیرگذار بودند. مقدار r2 این مدل نیز برابر با 21/0 بدست آمد. نتایج این تحقیق نشان داد که شاخص­های توپوگرافیکی نیز از اهمیت بالایی در پیش­بینی شوری برخوردار هستند. همچنین مقایسه نظیر به نظیر نتایج نشان داد که جنگل تصادفی از دقت بالاتری نسبت به مدل رگرسیون برای تعیین شوری در منطقه مورد مطالعه برخوردار است.

کلیدواژه‌ها

موضوعات


عنوان مقاله [English]

Evaluation and Modeling Soil Salinity Using Remote Sensing, Regression Model and Random Forest

نویسندگان [English]

  • Mahboubeh Sadeghi 1
  • Mozhgan Ahmadi Nadoushan 2
1 MSc student, Environmental Sciences, Department of Environmental Sciences, Isfahan (Khorasgan) Branch, Islamic Azad University, Isfahan, Iran
2 Assistant Professor of Environmental Sciences, Department of Environmental Sciences, Isfahan (Khorasgan) Branch, Islamic Azad University, Isfahan, Iran; Waste and Wastewater Research Center, Isfahan (Khorasgan) Branch, Islamic Azad
چکیده [English]

Nowadays, soil salinization is one of the world’s major threats that reduce soil productivity by intensifying the process of desertification and land degradation. Since laboratory analysis is mostly time consuming and costly, especially in large scales, attempts have been made to study soil salinity using remote sensing techniques in recent years. The present study assessed the potential of remote sensing in predicting soil surface salinity in the east of Lenjan                 City. Salinity reference points were identified based on analyzing 50 randomly selected surface soil samples. Satellite indices including DVI, NDVI, EVI, MSAVI, SAVI, RVI, NDWI, SI1, SI2, SI3 and SBI were derived from a Landsat-8 satellite image (path and row of 164 and 37) acquired on September 13, 2019. These indices along with three topographic indices of elevation, slope and topographic wetness index (TWI) were introduced to the Multiple Linear regression and Random Forest models. The linear regression model was built using band 6, RVI, NDVI, elevation and TWI with a p-value of 0.049. In the Random Forest model, band 7, slope, band 5 and elevation were among the most important parameters. The r2 value of this model was 0.21. The results of this study showed that topographic indices had also great importance in salinity prediction. Moreover, comparison of the results indicated that Random Forest had a higher accuracy than the regression model for determining salinity in the study area.

کلیدواژه‌ها [English]

  • Landsat-8
  • Satellite Index
  • Zarrinshahr
  • Topographic wetness index
  1. اصلانی، ا. 1390. تحلیل و بررسی یخبندان‌های شدید حوضه زاینده‌رود. پایان نامه کارشناسی ارشد. دانشگاه یزد. دانشکده جغرافیا. 8: 24-2.
  2. امینی‌خویی، ز.  عبدالله پوری، ع. 1396. طبقه بندی ترافیک شبکه با استفاده از الگوریتم جنگل تصادفی بهبودیافته. علوم رایانشی. 16: 2-17. 
  3. فرهمند، ا.، اوستان، ش.، جعفرزاده، ع. ا.، علی‌اصغرزاده، ن. 1391. پارامترهای شوری و سدیمی بودن در برخی خاک های متاثر از نمک دشت تبریز. نشریه‌ی دانش آب و خاک (دانش کشاورزی). 22 (1): 15-1.
  4. کرم، ا.، کیانی، ط.، دادرسی‌سبزوار، ا.، داورزنی، ز. 1398. برآورد شوری خاک با استفاده از داده‌های دورسنجی و آمار مکانی در منطقه سبزوار. فصلنامه‌ی علمی- پژوهشی پژوهش‌های ژئومورفولوژی کمی. 7 (4): 53-31.
  5. Abbas, A., S. Khan, N. Hussain, M. A. Hanjra and S. Akbar. 2013. Characterizing soil salinity in irrigated agriculture using a remote sensing approach. Physics and Chemistry of the Earth. Parts A/B/C 55: 43-52.
  6. Alexakis, D., I. Daliakopoulos, I. Panagea and I. Tsanis. 2018. Assessing soil salinity using WorldView-2 multispectral images in Timpaki, Crete, Greece. Geocarto International. 33-4: 321-338.
  7. Asfaw, E., K. Suryabhagavan and M. Argaw. 2018. Soil salinity modeling and mapping using remote sensing and GIS: The case of Wonji sugar cane irrigation farm, Ethiopia. Journal of the Saudi Society of Agricultural Sciences. 17-3: 250-258.
  8. Bouaziz, M., J. Matschullat and R. Gloaguen. 2011. Improved remote sensing detection of soil salinity from a semi-arid climate in Northeast Brazil. Comptes Rendus Geoscience. 343-11-12: 795-803.
  9. Deng, X., Z. Yang and A. Long. 2013. Ecological operation in the Tarim River Basin based on rational allocation of water resources. Journal of Glaciology and Geocryology. 35-6: 1600-1609.
  10. Ding, J. and D. Yu. 2014. Monitoring and evaluating spatial variability of soil salinity in dry and wet seasons in the Werigan–Kuqa Oasis, China, using remote sensing and electromagnetic induction instruments. Geoderma. 235: 316-322.
  11. El Harti, A., R. Lhissou, K. Chokmani, J.-e. Ouzemou, M. Hassouna, E. M. Bachaoui and A. El Ghmari. 2016. Spatiotemporal monitoring of soil salinization in irrigated Tadla Plain. Morocco using satellite spectral indices. International Journal of Applied Earth Observation and Geoinformation. 50: 64-73.
  12. Elhag, M. and J. A. Bahrawi. 2017. Soil salinity mapping and hydrological drought indices assessment in arid environments based on remote sensing techniques. Geoscientific Instrumentation, Methods and Data Systems. 6-1: 149.
  13. Etesami, H. and F. Noori. 2019. Soil Salinity as a Challenge for Sustainable Agriculture and Bacterial-Mediated Alleviation of Salinity Stress in Crop Plants. Saline Soil-based Agriculture by Halotolerant Microorganisms, Springer: 1-22.
  14. Farifteh, J., F. Van der Meer, C. Atzberger and E. Carranza. 2007. Quantitative analysis of salt-affected soil reflectance spectra: A comparison of two adaptive methods. PLSR and ANN. Remote Sensing of Environment. 110-1: 59-78.
  15. Gorji, T., E. Sertel and A. Tanik. 2017. Monitoring soil salinity via remote sensing technology under data scarce conditions: A case study from Turkey. Ecological Indicators. 74: 384-391.
  16. Hoffmann, JP.,  Shafer, K. 2015. Linear regression analysis. Washington, DC: NASW Press.
  17. Hanusz, Z., J. Tarasinska and W. Zielinski. 2016. Shapiro-Wilk test with known mean. REVSTAT-Statistical Journal. 14-1: 89-100.
  18. Islam, T. and E. Toor. 2019. Power Comparison of Autocorrelation Tests in Dynamic Models. International Econometric. Review 11.
  19. Khan, S. and A. Abbas. 2007. Using remote sensing techniques for appraisal of irrigated soil salinity. Int. Congr. Model. Simul.-MODSIM, Model. Simul. Soc. Aust. New Zealand, Bright-January: 2632-2638.
  20. Khellouk, R., A. Barakat, A. Boudhar, R. Hadria, H. Lionboui, A. El Jazouli, J. Rais, M. El Baghdadi and T. Benabdelouahab. 2020. Spatiotemporal monitoring of surface soil moisture using optical remote sensing data: a case study in a semi-arid area. Journal of Spatial Science. 65-3: 481-499.
  21. Leitão, P., M. Schwieder, F. Pötzschner, J., R. Pinto, A., M. Teixeira, F. Pedroni, M. Sanchez, C. Rogass, S. van der Linden, M. Bustamante. 2018. From sample to pixel: multi‐scale remote sensing data for upscaling aboveground carbon data in heterogeneous landscapes. Ecosphere. 9-8: e02298.
  22. Ma, Z., Y. Xu, J. Peng, Q. Chen, D. Wan, K. He, Z. Shi and H. Li. 2018. Spatial and temporal precipitation patterns characterized by TRMM TMPA over the Qinghai-Tibetan plateau and surroundings. International journal of remote sensing. 39-12: 3891-3907.
  23. Novara, A., A. Pisciotta, M. Minacapilli, A. Maltese, F. Capodici, A. Cerdà and L. Gristina. 2018. The impact of soil erosion on soil fertility and vine vigor. A multidisciplinary approach based on field, laboratory and remote sensing approaches. Science of the Total Environment. 622: 474-480.
  24. Okur, B. and N. Örçen. 2020. Soil salinization and climate change. Climate Change and Soil Interactions, Elsevier: 331-350.
  25. Page, AL. Miller, RH. Jeeney, DR. 1992. Methods of soil analysis, part 2. In: Chemical and Mineralogical Properties. Soil Science Society of American Publication. Pp: 1159.
  26. Peng, J., A. Biswas, Q. Jiang, R. Zhao, J. Hu, B. Hu and Z. Shi. 2019. Estimating soil salinity from remote sensing and terrain data in southern Xinjiang Province, China. Geoderma. 337: 1309-1319.
  27. Periasamy, S. and R. S. Shanmugam. 2017. Multispectral and microwave remote sensing models to survey soil moisture and salinity. Land Degradation & Development. 28-4: 1412-1425.
  28. Rahmati, N., Hamzehpour. 2017. Quantitative remote sensing of soil electrical conductivity using ETM+ and ground measured data. International Journal of Remote Sensing. 38-1: 123-140.
  29. Ren, D., B. Wei, X. Xu, B. Engel, G. Li, Q. Huang, Y. Xiong and G. Huang. 2019. Analyzing spatiotemporal characteristics of soil salinity in arid irrigated agro-ecosystems using integrated approaches. Geoderma. 356: 113935.
  30. Robinson, W., Allred, M., Jones, A., Moreno, J. S., Kimball, D. E., Naugle, T. A., Erickson, Richardson. 2017. A dynamic Landsat derived normalized difference vegetation index (NDVI) product for the conterminous United States. Remote Sensing. 9-8: 863.
  31. Salmerón Gómez, R., A. Rodríguez Sánchez, C. G. García and J. García Pérez. 2020. The VIF and MSE in Raise Regression. Mathematics 8-4: 605.
  32. Sidike, A., S. Zhao and Y. Wen. 2014. Estimating soil salinity in Pingluo County of China using QuickBird data and soil reflectance spectra. International Journal of Applied Earth Observation and Geoinformation. 26: 156-175.
  33. Sreekanth, V., B. Mahesh and K. Niranjan. 2017. Satellite remote sensing of fine particulate air pollutants over Indian mega cities. Advances in Space Research. 60-10: 2268-2276.
  34. Taghizadeh-Mehrjardi, R., B. Minasny, F. Sarmadian and B. Malone. 2014. Digital mapping of soil salinity in Ardakan region, central Iran. Geoderma. 213: 15-28.
  35. Wang, Z., W. Tan, D. Yang, K. Zhang, L. Zhao, Z. Xie, T. Xu, Y. Zhao, X. Wang and X. Pan. 2020. Mitigation of soil salinization and alkalization by bacterium-induced inhibition of evaporation and salt crystallization. Science of The Total Environment. 142-511.
  36. Wu, W., C. Zucca, A. S. Muhaimeed, W. M. Al‐Shafie, A. M. Fadhil Al‐Quraishi, V. Nangia, M. Zhu and G. Liu. 2018. Soil salinity prediction and mapping by machine learning regression in C entral M esopotamia, I raq. Land Degradation & Development. 29-11: 4005-4014.
  37. Xu, H. 2006. Modification of normalised difference water index. NDWI to enhance open water features in remotely sensed imagery. International journal of remote sensing. 27-14: 3025-3033.
  38. Zhou, X. and T. Jiang. 2016. Metamodel selection based on stepwise regression. Structural and Multidisciplinary Optimization. 54-3: 641-657.