اثرمتقابل نوع کود نیتروژنی و شوری خاک بر فراریت نیتروژن از خاک

نوع مقاله : مقاله پژوهشی

نویسندگان

1 دانشجوی سابق کارشناسی ارشد، دانشگاه شاهد

2 استادیارپژوهش، مرکز ملی تحقیقات شوری، سازمان تحقیقات، آموزش و ترویج کشاورزی، یزد، ایران

3 دانشیار، دانشگاه شاهد

چکیده

آبشویی و فراریت نیتروژن (خروج گاز آمونیاک از داخل خاک به اتمسفر) مهمترین راه­های هدرروی کودهای نیتروژنی می‌باشد و موجب کاهش کارایی جذب کودهای نیتروژنی می‌شوند. تحقیق اخیر با هدف بررسی اثر متقابل پنج نوع کود نیتروژنی (سولفات آمونیوم، نیترات آمونیوم، اوره، اوره با پوشش گوگردی و نیترات پتاسیم) و سه سطح شوری خاک (2، 8 و 12 دسی‌زیمنس بر متر) بر میزان فراریت روزانه و تجمعی نیتروژن در شرایط آزمایشگاهی انجام شد. نتایج نشان داد که شوری و نوع کود نیتروژنی تأثیر معنی‌داری بر میزان فراریت روزانه و تجمعی نیتروژن دارند. نیتروژن فراریت شده از کودهای سولفات آمونیوم، نیترات آمونیوم، اوره، اوره با پوشش گوگردی و نیترات پتاسیم در شوری عصاره اشباع خاک 2 دسی‌زیمنس بر متر به ترتیب معادل51%، 44%، 45%، 6% و 01/0% از نیتروژن خالص مصرفی بود. با افزایش شوری عصاره اشباع خاک میزان فراریت افزایش یافت. در شوری عصاره اشباع خاک 12 دسی‌زیمنس بر متر فراریت کل از کودهای سولفات آمونیوم، نیترات آمونیوم، اوره، اوره با پوشش گوگردی و نیترات پتاسیم به ترتیب معادل7/73%، 54%، 57%، 8% و 01/0% بود. به طورکلی نتایج این تحقیق نشان داد که کود نیترات پتاسیم کمترین میزان فراریت را داشت و پس از آن کودهای اوره با پوشش گوگردی، اوره، نیترات آمونیوم و سولفات آمونیوم قرار داشتند.بنا بر­این کود نیترات پتاسیم به عنوان کارآمدترین منبع کودنیتروژن توصیه می شود.

کلیدواژه‌ها

موضوعات


عنوان مقاله [English]

Interaction Effects of Nitrogen Fertilizer Sources and Soil Salinity on Ammonia Volatilization

نویسندگان [English]

  • Mostafa Behdbouieh 1
  • Mehdi Karimi 2
  • abdolamir Bostani 3
1 Assistant Professor, National Salinity Research Center, Agricultural Research, Education and Extension Organization, Yazd, Iran
2 Assistant Professor, National Salinity Research Center, Agricultural Research, Education and Extension Organization, Yazd, Iran
3 Associate Professor, University of Shahed, Tehran, Iran
چکیده [English]

Leaching and ammonia volatilization are known as the main pathways of nitrogen loss as well as the cause of low nitrogen use efficiency. The present study aimed to study the interaction of five nitrogen fertilizer sources (ammonium sulfate, ammonium nitrate, urea, sulfur coated urea and potassium nitrate) and three soil salinity levels (ECe = 2, 8, and 12 dS/m) on daily as well as cumulative ammonia volatilization. The results showed that salinity and nitrogen fertilizer sources had significant effect on cumulative and daily ammonia volatilization rate. At soil salinity of 2 dS/m, nearly 51%, 44%, 45%, 6% and 0.01% of ammonium sulfate, ammonium nitrate, urea, sulfur coated urea, and potassium nitrate were lost through ammonia volatilization, respectively. These values at soil salinity level of 12 dS/m significantly increased to 73.7%, 54%, 57%, 8%, and 0.01% for ammonium sulfate, ammonium nitrate, urea, sulfur coated urea and potassium nitrate, respectively. In general, the results showed that potassium nitrate had the minimum ammonia loss through volatilization and was followed by sulfur coated urea, urea, ammonium nitrate, and ammonium sulfate, respectively. Regarding the highest nitrogen uptake efficiency and minimum nitrogen loss, potassium nitrate is recommended as the most efficient source of nitrogen fertilizer.

کلیدواژه‌ها [English]

  • Nitrogen loss
  • Potassium Sulfate
  • Urea
  • Sulfur coated urea
  1. بنایی، م.ح.، ع.، مومنی، م.، بای‌بوردی، و م.ج. ملکوتی. 1383. خاک­های ایران. انتشارات سنا.
  2. چراغی، س.ع.م. و م. کریمی. 1395. تبیین رابطه شوری آب آبیاری و شوری خاک. نشریه مدیریت آب در کشاورزی. 3(1): 1-8.
  3. کریمی، م. 1398. پاسخ گندم رقم بم به اثرات متقابل شوری آب آبیاری و سطوح مختلف کود سولفات پتاسیم. تنش‌های محیطی در علوم زراعی، 12(1): 249-239.
  4. کریمی زارچی، م. 1394. راهمای مصرف کودهای نیتروژنی برای تولید گندم. انتشارات صحراشرق. ایران.
  5. ملکوتی، م.ج. 1397. نقش مصرف بهینه کود در افزایش عملکرد و تولید محصولات کشاورزی سالم. نشر مبلغان. ایران.
  6. Ahmed, M., Yu, W., Le, M., Raza, S., Zhou, J., 2018. Mitigation of ammonia volatilization with application of urease and nitrification inhibitors from summer maize at the Loess Plateau. Plant Soil Environment, 64(4):164-172.
  7. Bouyoucos, C.J. 1962. Hydrometer method improved for making particle-size analysis of soil. Agronomy Journal, 54: 406-465.
  8. Butcher, K., Wick, A.F., Desutter, T., Chatterjee, A. and Harmon, J. 2016. Soil Salinity: A Threat to Global Food Security. Agronomy Journal, 108:2189–2200.
  9. A.O., 2017. World fertilizer trends and outlook to 2020. https://www.fao.org/3/i6895e /i6895e.pdf
  10. Fenn, L.B. and Kissel, D.E., 1973. Ammonia volatilization from surface applications of ammonium compounds on calcareous soils: I. General theory. Soil Science Society of America Journal, 37(6): 855-859.
  11. Fisher, K.A., Meisinger, J.J., and James, B.R., 2016. Urea Hydrolysis Rate in Soil Toposequences as Influenced by pH, Carbon, Nitrogen, and Soluble Metals. Journal of Environmental Quality. 45, 349–359.
  12. Fenn, L.B., and Kissel, D.E., 1974. Ammonia volatilization from surface applications of ammonium compounds on calcareous soils: II. Effects of temperature and rate of ammonium nitrogen application. Soil Science Society of America Journal, 38(4): 606-610.
  13. Fontoura, S.M.V. and Bayer, C., 2010. Ammonia volatilization in no-till system in the south-central region of the state of Paraná, Brazil. R. Bras. Ci. Solo, 34:1677-1684.
  14. He, Z., Kumar, A.A., Calvert, D.D. and Banks, D.J., 1999. Ammonia volatilization from different fertilizer sources and effects of temperature and soil pH. Soil Science, 164(10): 750-758.
  15. Iqbal, Z. F. Hussain and M. H. Naqvi, 1998. Ammonia Volatilization from Urea Applied to Salt-affected Soils under Flooded and Non-flooded Conditions. Pakistan Journal of Biological Sciences, 1: 372-375.
  16. Jones, C. and Jacobsen, J. 2005. Nitrogen cycling, testing and fertilizer recommendations. Montana State Univerisity Extention Service.
  17. Karimizarchi, M., Aminuddin, H., Khanif, M.Y. and Radziah, O., 2015. Elemental sulphur effects on nitrogen loss in Malaysian high pH Bintang Series soil. Malaysian Journal of Soil Science. 19: 83-94.
  18. Mansouri, T., Golchin, A. and Rezaei, Z., 2017. Effect of Source and Amount of Nitrogen, the Amount of Calcium Carbonate of Soil and Different Amounts of Alfalfa Residue on Nitrogen Losses as Ammonia. Journal of water and soil. 31(1), 286-301.
  19. Moshiri, F., Shahabi, A.A., Keshavarz, P., Khoogar, Z., Feiziasl, V., Tehrani, M.M., Asadirahmani, H., Samavat, S., Qeibi, M.N., Sadri, M.H., Rashidi, N., Khademi, Z., 2014. Guidelines for Integrated Soil Fertility and Plant Nutrition Management of Wheat. Sana Press, Tehran. [In Persian].
  20. Motesharezadeh, B., Vatanara; F., and Savaghebi, G.R., 2015. Effect of Potassium and Zinc on Some Responses of Wheat (Triticum aestivum L.) under Salinity Stress. Iranian Journal of Soil Research, 29: 243-381. [In Persian].
  21. Nascimento, C. A. C. D., Vitti, G. C., Faria, L. D. A., Luz, P. H. C., and Mendes, F. L., 2013. Ammonia volatilization from coated urea forms. Revista Brasileira de Ciência do Solo, 37(4), 1057-1063.
  22. Pacholski, A., Cai, G. , Nieder, R., Richter, J., Fan, X., Zhu, Z., and Roelcke, M., 2006. Calibration of a simple method for determining ammonia volatilization in the field – comparative measurements in Henan Province, China. Nutrient Cycling in Agroecosystems, 74: 259-273. doi: 10.1007/s10705-006-9003-4.
  23. Page, A.L., 1982. Methods of soil analysis. Part 2. Chemical and microbiological properties: American Society of Agronomy, Soil Science Society of America,
  24. Pan, B., Lam, S.K., Mosier, A., Luo, Y., Chen, D., 2016. Ammonia volatilization from synthetic fertilizers and its mitigation strategies: A global synthesis. Agriculture, Ecosystems and Environment, 232: 283–289.
  25. Qadir, M., Quillerou, E., Nangia, V., Murtaza, G., Singh, M., Thomas, R.J., Dreschel, P., and Noble, A.D., 2014. Economics of salt-induced land degradation and restoration. Natural Resource Forum, 38: 282–295.
  26. Rezvani Moghaddam, P., Koocheki, A. 2001. Research history on salt affected lands of Iran: Present and future prospects–Halophytic ecosystem. International Symposium on Prospects of Saline Agriculture in the GCC countries, Dubai, UAE.
  27. Selvarajh, G., Ch’ng, H.Y., and Norhafizah, M.Z. 2020. Effects of rice husk biochar in minimizing ammonia volatilization from urea fertilizer applied under waterlogged condition. AIMS Agriculture and Food, 6(1): 159–171.
  28. Shan, L., He, Y., Chen, J., Huang, Q., & Wang, H. 2015. Ammonia volatilization from a Chinese cabbage field under different nitrogen treatments in the Taihu Lake Basin, China. Journal of Environmental Sciences, 38: 14-23.
  29. Song Y.S., Fan X.H., Lin D.X., Yang L.Z. and Zhao J.M., 2004. Ammonia volatilization from paddy fields in the taihu lake region and its influencing factors. Acta Pedology Sinica, 41:265-269.
  30. Toufiq M., 2005. Measurement of ammonia emission following surface application of urea fertilizer from paddy fields. Pakistan Journal of Biological Sciences, 8:429-432.
  31. S. Salinity Laboratory Staff, 1954. Diagnosis and improvement of saline and alkali soils. Washington. DC. USDA Handbook No. 60.
  32. Whitehead, D. C., and Raistrick, N. 1990. Ammonia volatilization from five nitrogen compounds used as fertilizers following surface application to soils. European Journal of Soil Science, 41(3): 387-394.
  33. Viero, F., Bayer, C., Mara, S., Fontoura, V., and Paulo, R., 2014. Ammonia volatilization from nitrogen fertilizers in no till wheat and maize in southern Brazil. R. Bras. Ci. Solo, 38:1515-1525.