برآورد منحنی نگهداری آب خاک به روش رگرسیون و به کمک مدل گرانولت و گرنت

نوع مقاله : مقاله پژوهشی

نویسندگان

1 استادیار گروه خاکشناسی دانشگاه بوعلی سینا-همدان

2 دانشجوی کارشناسی ارشد دانشگاه بوعلی سینا-همدان

3 استادیار مؤسسه تحقیقات برنج کشور

4 استاد دانشگاه بوعلی سینا-همدان

5 دانشیار دانشگاه بوعلی سینا-همدان

چکیده

ویژگی‌های هیدرولیکی خاک برای مدلسازی حرکت آب و مواد در خاک‌­ مورد نیاز می­باشد. به دلیل تغییرپذیری بالا و پیچیدگی خاک، به دست آوردن آنها به گونه مستقیم دشوار، زمان‌بر و هزینه بر است. توابع انتقالی برای برآورد منحنی نگهداری آب خاک (SWRC) با روش­های گوناگونی از جمله روش‌های رگرسیونی (regression) ساخته شده­اند. در این پژوهش توابع انتقالی برای برآورد پارامترهَای SWRC مدل گرانولت و گرنت بکار رفتند. برای این کار 69 نمونه از خاک‌­های استان گیلان گردآوری گردید. توزیع اندازه دانه‌های خاک و خاکدانه­های ریز، SWRC و ویژگی­های پایه خاک در آزمایشگاه اندازه‌­گیری گردید. مدل­های فراکتالی و غیر­فراکتالی بر داده­های توزیع اندازه دانه‌های خاک و خاکدانه­های ریز برازش شده و پارامتر­های آنها برآورد شدند. برای پیش­بینی پارامترهای مدل گرانولت و گرنت روش رگرسیون خطی (linear regression) بکار گرفته شد. برای برآورد هر کدام از پارامتر­های مدل گرانولت و گرنت چهار تابع انتقالی طراحی شد، به گونه­ای که از پارامتر­های مدل­های توزیع اندازه دانه‌ها و خاکدانه­های ریز همانند برآورد­گر بهره‌گیری گردید. سپس SWRC با استفاده از پارامتر­‌های برآورد شده محاسبه و با SWRC اندازه‌گیری شده مقایسه گردید. در مقایسه با دیگر برآورد­گرها، بهره‌گیری از پارامتر­های فراکتالی توزیع اندازه دانه‌های خاک برآورد بهتری از SWRC را بدست داد. مدل فردلاند با پارامتر­‌های بیشتری که دارد نتوانست دقتی بیشتر و یا معادل با پارامترهای فراکتالی با تعداد کمتر در برآورد SWRC بدست دهد. شاید این یافته برتری تئوری فراکتالی در مدلسازی توزیع اندازه دانه‌ها و SWRC را نشان دهد.

کلیدواژه‌ها


عنوان مقاله [English]

Developing Pedotransfer Functions to Estimate Soil Water Retention Curve by Regression Method Using Groenevelt and Grant Model

نویسندگان [English]

  • H. Bayat 1
  • G. Ebrahim Zadeh 2
  • Naser Davatgar 3
  • Ali Akbar Safari Sinegani 4
  • H. Zare Abyaneh 5
1 Assistant Professor, Bu Ali Sina University
2 M. Sc. student of Bu Ali Sina University
3 Assistant Professor, Rice Research Institute of Iran
4 Professor, Bu Ali Sina University
5 Associate Professor, Bu Ali Sina University
چکیده [English]

Data on soil hydraulic properties are required to model water movement in soils. Their direct measurements are difficult, time consuming, and expensive, because of high variability and complexity of soil systems. Pedotransfer functions are developed to estimate soil water retention curve (SWRC) using different techniques. In this study, pedotransfer functions were developed to estimate SWRC using the model of Groenevelt and Grant. Sixty nine soil samples were collected from Guilan Province. Soil particles and micro aggregate size distributions, SWRC, and basic soil properties were measured in the laboratory. Fractal and non-fractal models were fitted to the particles and micro aggregate size distributions and their parameters were calculated. Linear regression technique was used to predict the parameters of Groenevelt and Grant’s model. In order to estimate every parameter of the model of Groenevelt and Grant, four pedotransfer functions were developed using each technique and fractal parameters of particles and micro aggregates were used as predictors. Then, estimated parameters were used to simulate SWRC and were compared with the measured SWRC. Fractal parameters of the particle size distribution rendered better predictions of SWRC compared with the other predictors. In spite of the large number of the parameters, using Fredlund’s model did not result in more accurate predictions for SWRC in comparison with using fractal parameters. Probably, these results showed the priority of fractal theory in the particle size distribution and SWRC modeling.  

کلیدواژه‌ها [English]

  • Fractal parameters
  • Fredlund’s model
  • Micro aggregate size distribution
  • Particle size distribution
  1. خداوردی­لو، ح. و همایی، م. 1381. اشتقاق توابع انتقالی خاک به منظور براورد منحنی مشخصه رطوبتی. مجله تحقیقات مهندسی کشاورزی. 3(10):46-35
  2. رضایی، ع. و نیشابوری، م. ر. 1378. تعیین منحنی مشخصه آب خاک با استفاده از منحنی توزیع اندازه ذرات و جرم مخصوص ظاهری خاک. ششمین کنگره علوم خاک ایران. مشهد. ص307-306.
  3. شیرین فکر ، ا. 1388. استفاده از مدل­های هم­دمای جذب سطحی فسفر وارتباط آن با خاکهای اسیدی باغ­های چای.گزارش نهایی. مرکز اطلاعات و مدارک علمی سازمان تحقیقات،آموزش و ترویج کشاورزی.ص:1-52
  4. محمدی ج.، 1382. پدومتری-جلد اول: آمار کلاسیک. 531 صفحه.
  5. محمدی ج.، و رئیسی گهرویی، ف. 1382. توصیف فراکتالی اثرات قرق دراز مدت و چرای مفرط بر الگوی تغییرات مکانی شماری از ویژگی های شیمیائی خاک. علوم و فنون کشاورزی و منابع طبیعی، 4: 25-37.
  6. Anderson, A. N., McBratney, A. B. and FitzPatrick, E. A., 1996. Soil mass, surface, and spectral fractal dimensions estimated from thin section photographs. Soil Sci. Soc. Am. J. 60: 962-969.
  7. Anderson, A. N., McBratney, A. B and Crawford, W. J., 1998. Application of fractals to soil studies. Adv. Agron. 63:1-76.
  8. Arya, L. M. and Paris, J. F, 1981.A physicoemprical model to predict the soil moisture characteristic from particle size distribution and bulk density data.Soil. Sci. Soc. Am. J. 45: 1023-1030.
  9. Arya, L.M., Leij, F.J., Van Genuchten, M.Th. and Shouse, P.J. 1999a. Scaling parameter to predict the soil water characteristic from particle size distribution. Soil Sci. Soc. Am. J. 63: 510-519.
  10. Arya, L.M., Leij, F.J., Van Genuchten, M.Th. and Shouse, P.J. Relation between hydraulic conductivity function and the particle- size distribution. Soil Sci. Soc. Am. J. 63: 1063-1070.
  11. Bavaye, P., Parlang, J.Y. and Stewart, B.A. 1998. Fractal in soil science.Advances in soil science.CRC Press, Boc Raton, FL.
  12. Bayat, H., Neyshbouri, M. R., Mahboubi, A. A., Mosadeghi, M.R. (2008) “Perediction of penetration resistance using artificial neural network and comparison with linear and nonlinear regression model”.Turkish journal Agriculture and Forestry. 32, 425-433.
  13. Bird, N.R.A., Bartoli, F. and Dexter, A.R. 1996. Water retention models for fractal soil structures. Eur. J. Soil Sci. 47: 1-6.
  14. Brooks, R.H. and Corey, A. T. 1964. Hydraulic properties of porous media. Hydrology Paper no. 3. Colorado State Univ, fort Collins, Co. USA.
  15. Crawford, J. W., Sleeman, B.D. and Young, I.M. 1993. On the relation between number size distribution and fractal dimension of aggregates. J. Soil Sci. 44:555-565.
  16. Crawford, J. W., Matsui, N. and Young, I.M. 1995. The relation between the moisture release curve and the structure of soil. Eur. J. Soil Sci. 46: 369-375.
  17. Dowd, P.A. and Sarac, c. 1994.A neural network approach to geostatistical simulation, Mathematical geology.26 (4):493-503.
  18. Fooladmand, H.R., and Hadipour, S. 2011. Parametric pedotransfer functions of a simple linear scale model for soil moisture retention curve. African Journal of Agricultural Research. 6(17): 4000-4004.
  19. Fredlund, M.D., Fredlaund, D.G., Ward Wilson, G. 2000. An equation to represent grain-size distribution.Can.Geotech. J. 37: 817-827.
  20. Gardner W. 1956. Mathematics of isothermal water conduction in unsaturated soils. Highway Research Board Special Report 40 International Symposuim on Physico Chemical Phenomenon in Soils. Washington DC. 78-87.
  21. Groenevelt, P.H., Grant, C.D., 2004. A new model for the soil water retention curve that solves the problem of residual water contents. J. Soil Sci.55: 479-485.
  22. Gee, G.W., and Or, D. 2002. Particle-size Anallysis In: Warren, A.D. (ed) Methods os soil analysis. Part 4.Physical Methods. Soil Sci. Soc. Am. J. pp: 255-295.
  23. Grossman, R.B. and Reinsch, T.G. 2002. Bulk density and linear extensibility. In: Warren, A.D. (ed) Methods of soil analysis. Part 4.Physical Methods Soil Sci. Soc. Am. J. 201-228.
  24. Guber, A.K., Rawls, W.J., Shein, E.V. and Pachepsky, Y.A. 2003. Effect of soil aggregate size distribution on water retention. Soil Sci. 168: 223-233.
  25. Gupta, S.C and Larson, W.E. 1979a. Estimating soil water retension characteristic from particle size distribution, organic matter percent, and bulk density. Water Resour. Res. 15:1633-1635.
  26. Havercamp, R. and Parlang, J.Y. 1986. Prediction retention curve from particle size distribution, I. Sandy soils without organic matter. Soil Sci. 142:325-339.
  27. Hillel, D. 1998. Environmental soil physics.Academic Press, pp.771.
  28. Haung, G.H. and Zhang, R. 2005. Evauation of soil water retension curve with the pore-solid fractal model. Geoderma.127:52-61.
  29. Hunt, A.G. and Gee, G.W. 2002. Water retention of fractal soil models using continuum percolation theory: test of handford site soils. Vadose Zone J. 1:252-260.
  30. Hwang, S.I. and Powers, S.E. 2003. Using particle-size distribution models to estimate soil hydraulic properties. Soil Sci. Am. J. 67: 1103-1112.
  31. Khlosi, M., Cornelis, W. M., Douak, S., Van Genuchten, M, T., and Gabriel, D. 2008. Performance evaluation of models that describe the soil water retention curve between saturation and oven dryness. Vadose Zone Journal. 7: 87-96.
  32. Koekkoek, E. J. W. and Booltink, H. 1999. Neural network models to predict soil-water retention. Eur. J. Soil Sci. 50489-496.
  33. Millan, H. and Orellana, R. 2001. Mass fractal dimensions of soil aggregates from different depths of a compacted vertisol. Geoderma 101: 65-76.
  34. Minasny, B. and McBratney, A.B. 2002. The Neuro-m method for fitting neural network parametric pedotransfer functions. Soil Sci. Soc. Am. J. 66: 352-361.
  35. Pachepsky, Y., Rawls, W., Gimenez, and  Watt,  J.P.C. 1998. Use of soil penetrationresistance and group method of data handling to improve soil water retention estimates. Soil and Tillage Res. 49: 117-126.
  36. Pachepsky, Y. and rawls, W. 1999. Accuracy and redliability of pedotransfer functions as a affected by grouping soils. Soil Sci. Soc. Am. J. 63:1748-1757.
  37. Perrier, E., Bird, N., 2002. Modelling soil fragmentation: the PSFapproch. Soil Tillage Res. 64: 91-99.
  38. Perrier, E., Bird, N., 2003. The PSF model of soil structure: a multiscale approach. In: Pachepsky, Ya., Radcliff, D.E., Selim, H.M. (Eds), scaling methods in soil physics. CRC Press, Boca Raton, FL, pp. 1-18.
  39. Quinn, G. P. & Keough, M. J. 2002. Experimental Design and Data Analysis for Biologists. Cambridge University Press, Cambridge, UK.
  40. Rawls, W. J., Brakensiek, D.L., 1985. Prediction of soil water properties for hydrologic modeling In: jones, E., Ward, T. J. (Eds).Watershed Manag. Eighties. Proceedig os Symposium ASCE, Denver, CO, 30April-2 May 1985 ASCE, New York, pp. 293-299
  41. Riue, M. and Sposito, G. 1991. Fractal fragmentation, soil porosity and soil water properties. I. Theor. Soil Sci. Soc. Am. J. 55: 1231-1238.
  42. Schaap, M.G. and Bouten, W. 1996. Modeling water retention curves of sandy soils using neural networks. Water Resour. Res. 32: 3033-3040.
  43. Schaap, M.G., leij, F.J. and Van genuchten, M.Th. 1998.Neural network analysis for hierarchical prediction of soil hydraulic properties. Soil Sci. Soc. Am. J. 62: 847-855.
  44. Scheinost, A.C., Sinowsi, W. and Auerswald, K. 1997. Regionalization of soil water retention curves in highly variable soilscape, I. Developing a new pedotransfer function. Geoderma 78: 129 – 143.
  45. Schuh, W.M., Cline, R.L. and Sweney, M.D. 1988. Comparison of laboratory procedure and a textural model for predicting in situ soil water retention. Soil Sci. Soc. Am. J. 52: 1218-1227.
  46. Sepaskhah, A.R., Tafteh, A. 2011. Pedotransfer function for estimation of soil specific surface area using soil fractal dimention of improved particle size distribution. Agronomy and Soil Science journal.pp: 1-11
  47. Tietje, O. and Tapkenhinrichs, M. 1993. Evalution of pedo-transfer function. Soil Sci. Soc. Am. J. 57: 1088-1095.
  48. Tomasella, J., Pachepsky, Y., Crestana, S. and Rawls, W.J. 2003. Comparison of two technigues to develop pedotransfer functions for water retention. 67: 1085-1092.
  49. Tyler, S.W. and Wheatcraft, S.W. 1990. Fractal Process in soil water retention. Water Resour. Res. 26:1047-1054.
  50. Tyler, S.W. and Wheatcraft, S.W. 1992. Fractal Scaling of soil particle-size distribution: analysis and limitation. Soil Sci. Soc.Am. J.56:362-369.
  51. Ungaro, F., Calzolari, C. and Busano, E. 2005. Development of pedotransfer functions using a group method of data handeling for the soil of the PianuraPadano-Veneta region of north Italy: Water retention properties. Geoderma. 124:293-317.
  52. Van Genuchten, M.Th. 1980. A closed-form equation for predicting the hydraulic conductivity of unsaturated soils. Soil Sci. Soc. Am. J. 44:892-898.
  53. Vereecken, H., Maes, J., Feyen, J. and Darius, P.  Estimating the soil moisture retention characteristics from texture, bulk density and carbon content. Soil Sci. 148:389–403.
  54. Vereecken, H., Dielst, J., Van Orahoven, J., Feyen, J. and Bouma, J. 1992. Functional evalution of pedotransfer for the estimation of soil hydraulic properties.Soil Sci. Soc. Am. J. 56: 1371-1378.
  55. Walczak, R., Witkowska-Walczak, B. and Stawinski, C. 2004.Pedotransfer studies in Poland. In Y. Pachepsky, and W. J. Rawls (Eds). Development of pedotransfer functions in soil hyrology. Elsevier, Boston, Heidelberg, London, pp. 449-462.
  56. Walczak, R.T., Moreno, F., Stawinski, C., Fernande, E. and Arrue, J. L. 2006.Modeling of soil water retention curve using soil solid phase parameters. J. Hydrol. 329: 527-533.
  57. Wösten, J.H.M., Pachepsky, Y. and Rawls, W.J. Pedotransfer functions: bridging the gap between available basic soil data and missing soil hydraulic characteristics. J. Hydrol. 251: 123-150.
  58. Xu, Y.F. and Ping Dong. 2004. Fractal approach to hydraulic properties in unsaturated porous media. Chaos, Solitions and Fractals. 19: 327-337.
  59. Young, I.M. and Crawford, J.W. 1991. The fractal structure of soil aggregates: its measurement and interpretation. Soil Sci. 42:187-192.
  60. Young, I.M. and Crawford, J.W. and rappoldt, C. 2001.New method and models for characterizing structural heterogeneity of soil. Soil and Tillage Res. 61: 33-45.
  61. Zuur, A. F., Ieno, E. N. & Smith, G. M. 2007. Analysing ecological data. Springer, New York.