مقیاس سازی و بررسی تغییرات مکانی ویژگی‌های نفوذ آب به خاک در مقیاس حوضه آبریز مرغملک شهرکرد

نوع مقاله : مقاله پژوهشی

نویسندگان

1 دانشجوی دوره دکتری گروه مهندسی آب دانشگاه فردوسی مشهد

2 استاد گروه مهندسی آب دانشگاه فردوسی مشهد

3 دانشجویان دوره دکتری گروه مهندسی آب دانشگاه فردوسی مشهد

4 دانشیار گروه خاک‌شناسی دانشگاه شهرکرد

چکیده

نفوذ آب به خاک یکی از مهم‌ترین پارامترها در آبیاری و کشاورزی است. یکی از اطلاعات اساسی مورد نیاز برای طراحی یک سیستم آبیاری کارآمد، آگاهی از مشخصات نفوذ آب به خاک است. تعیین تغییرپذیری مکانی فرایند نفوذ در خاک علی­رغم دشواری زیاد، یکی از مهم‌ترین پیش نیازهای نیل به کشاورزی دقیق است. هدف از پژوهش حاضر تحلیل تغییرات مکانی و ویژگی‌های نفوذ در حوضه آبریز شهرکرد می­باشد. برای مقیاس سازی منحنی نفوذ از داده­های 111 حلقه­ی مضاعف با بار ثابت در حوضه مورد مطالعه استفاده شد. داده­ها با چهار مدل نظری، گرین-آمپ، کوستیاکوف، کوستیاکوف-لوئیس و فیلیپ، برازش داده شدتد. بر اساس ضریب همبستگی پیرسون (R) و معیار دقت مدل (MAE)، مدل فیلیپ بهترین برازش را دارا بود. فراسنج­های مدل فیلیپ (عامل انتقال و ضریب جذب) نشان­دهنده تغییرات مختلفی در منطقه بودند. عامل مقیاس برای ضریب انتقال ( ) و ضریب جذب ( ) محاسبه شدند و پس از آن داده­های نفوذ مشاهده شده مقیاس (Scale) شدند. همچنین بررسی  نشان داد که خطای مدل نیم تغییرنمای داده­های اندازه­گیری شده  با اثر قطعه­ای 0001/0 و دامنه تأثیر 793/0 کیلومتر برابر 073/0 درصد می­باشد که نشان دهنده وجود همبستگی مکانی  در منطقه است. مقادیر ضریب همبستگی پیرسون و انحراف مدل بین نفوذ واقعی و نفوذ از مقیاس خارج شده (de-Scale) بر اساس ، به ترتیب 944/0 و 426/0 بدست آمد.

کلیدواژه‌ها


عنوان مقاله [English]

Scaling and Spatial Analysis of Infiltration in Marghmalek Watershed in Shahrekord

نویسندگان [English]

  • M. Naderian Far 1
  • B. Ghahraman 2
  • S. A. K. Sajjadi 3
  • J. Mohammadi 4
1 PhD student, Irrigation & Drainage, Department of Water Engineering, Ferdowsi University of Mashhad
2 Professor, Department of Water Engineering, Ferdowsi University of Mashhad
3 PhD students, Irrigation & Drainage, Department of Water Engineering, Ferdowsi University of Mashhad
4 Associate Professor, Department of Soil Science, University of Shahrekord
چکیده [English]

Infiltration is one of the most important parameters in irrigation and agriculture. Knowledge of soil infiltrability is needed for designing an efficient irrigation system. However, determination of soil infiltration variability, though it is a difficult task, is a prerequisite for any precision agriculture setup. In this study, spatial variability of infiltration at the regional scale (Shahrekord watershed) is investigated. A total of 111 infiltration curves, obtained by double ring method with constant water head, were used to scale the infiltration. Four theoretical models, namely, Green- Ampt, Kostiakov, Kostiakov-Lewis, and Philip’s were fitted to the data. Philip model was the best, based on Pearson correlation and MAE statistics. Transfer factor (A) and sorptivity (S) were spatially distributed in the watershed and were scaled by two different scaling factors of  and , respectively. Afterwards, all 111 infiltration curves were scaled. Nugget effect and range of  was 0.0001 and 0.793 km, which implies a high spatial correlation structure. Therefore, scaling by  was superior to scaling by  . Pearson correlation of 0.944 and an error of 0.426 between the measured and de-scaled data were determined.

کلیدواژه‌ها [English]

  • Infiltration curves
  • Scaling factor
  • Spatial correlation
  • Transfer factor
  1. متقیان، ح ر. کریمی، ا. و محمدی، ج. 1387. تجزیه و تحلیل تغییرات مکانی برخی از ویژگی‌های فیزیکی و هیدرولیکی خاک در مقیاس حوزه آبخیز، مجله آب و خاک (علوم و صنایع کشاورزی). 22(2): 446-432
  2. عماری، پ. 1377. مطالعات اجمالی خاک‌شناسی و طبقه­بندی اراضی منطقه بوکان استان آذربایجان غربی). نشریه شماره 1027. سازمان تحقیقات، آموزش و ترویج کشاورزی مؤسسه آب و خاک. صفحه 76.
  3. هیلل، د. 1389. فیزیک خاک و محیط زیست، مترجم: بیژن قهرمان، انتشارات دانشگاه فردوسی مشهد، شماره­ی 572، 987 صفحه.
  4. Becket, P.H.T. Webster, R. 1971. Soil variability: a review. Soils and Fertilizer, 34, 1–15
  5. Beven, K. J. Henderson, D.E.  Reeves, A.D. 1993. Dispersion parameters for undisturbed partially saturated soil. Journal of Hydrology, 143, 19–43
  6. Bosch, D.D. and West, L.T. 1998. Hydraulic conductivity variability for two sandy soils. Soil Sci. Soc. Am. J. 62: 90-98.
  7. Comegna, V. Vitale, C. 1993. Space–time analysis of water status in a volcanic Vesuvian soil. Geoderma, 60: 135–158
  8. Cressie, N. 1991. Statistics for Spatial Data. Wiley Interscience, NY
  9. Green, W.H. Ampt, G.A. 1911. Studies of soil physics—part I: the flow of air and water through soils. Journal of Agricultural Sciences, 4(1): 1–24
  10. Haverkamp, R. Parlange, J.Y. Starr, J.L. Schmitz, G. Fuentes, C. 1990. Infiltration under ponded conditions: 3, a predictive equation. Soil Science, 149: 292–300.
  11. Holtan, H.N. 1961. A concept for infiltration estimates in watershed engineering. USDA-ARS, pp 41–51
  12. Horton, R.E. 1940. An approach towards a physical interpretation of infiltration capacity. Soil Science Society of America Proceedings, 5: 399–417.
  13. Isaaks, E.H. Srivastava, R.M. 1989. An Introduction to Applied Geostatistics. Oxford University Press, New York
  14. Jury, W.A. 1986. Spatial variability of soil properties. In: Vadose Zone Modeling of Organic Pollutants (Hern S C; Melancon, eds). Lewis Publishers, Chelsea, MI
  15. Keisling, T.C. Davidson, J.M. Weeks, D.L. Morrison, R.D. 1977. Precision with which selected soil parameters can be estimated. Soil Science, 124: 241–248
  16. Kostiakov, A.N. 1932. On the dynamics of the coefficient of water percolation in soils and on the necessity of studying it from a dynamic point of view for the purposes of amelioration. Transactions of the Sixth Congress of International Society of Soil Science, Moscow. Russian Part A, 17–21 pp.
  17. Kozak, J. Liwang, M. Saseendran, S.A. 2006. Scaling Infiltration and Other Soil Water Processes Across Diverse Soil textural Classes Using the Lewis-Kostiakov Equation, The ASA-CSSA-SSSA International Annual Meetings (November 12-16, 2006) Indianapolis
  18. Kutilek, M. Nielsen, D.R. 1994. Soil Hydrology. Catena, Germany.
  19. Machiwal, D. Madan, K. Jha. Mal, B.C. 2006. Modelling Infiltration and quantifying Spatial Soil Variability in a Wasteland of Kharagpur, India. Biosystems Engineering. 95(4): 569–582
  20. Mallants, D. Mohanty, D.B.P. Feyen, J. 1996. Spatial variability of hydraulic properties in a multilayered soil profile. Soil Sci. 161(3): 167-181.
  21. McBratney, A.B. 1998. Some considerations on methods for spatially aggregating and disaggregating soil information. Nutrient Cycling Agroecosystem, 50: 51-62.
  22. Miller, E.E. Miller, R.D. 1956. Physical theory for capillary flow phenomena. Journal of Applied Physics, 27: 324–332.
  23. Mulla, D.J. McBratney, A.B. 2002. Soil spatial variability. In: Soil Physics Companion (Warrick A W, ed), pp 343–373. CRC Press, Florida
  24. Nielsen, D.R. Biggar, J.W. Erh, K.T.1973. Spatial variability of field-measured soil-water properties. Hilgardia, 42: 215–259.
  25. Parlange J -Y; Haverkamp R; Touma J (1985). Infiltration under ponded conditions—1: optimal analytical solution and comparison with experimental observations. Soil Science, 139, 305–311
  26. Philip J R (1957). The theory of infiltration—3: moisture profiles and relation to experiment. Soil Science, 84,163–178
  27. Philip J R (1969). Theory of Infiltration. Academic Press, New York Vol. 9, pp 215–295
  28. Ravi V; Williams J R (1998). Estimation of infiltration rate in the vadose zone: compilation of simple mathematical models, Vol. I. United States Environmental Protection Agency, EPA/600/R-97/128a, 26pp
  29. Rasoulzadeh A; Sepaskhah A R (2003). Scaled Infiltration Equations for Furrow Irrigation, Biosystems Engineering, 86 (3): 375-383
  30. Swartzendruber D; Hillel D (1973). The physics of infiltration. In: Physical Aspects of Soil Water and Salts in Ecosystems (Hadas A, ed), pp 315–324. Springer-Verlag, Berlin
  31. Sharma M L; Gander G A; Hunt C G (1980). Spatial variability of infiltration  in  a    Journal  of Hydrology,  45, 122-101
  32. Talsma T (1980). In situ measurement of sorptivity. Australian Journal of Soil Research, 7, 269–276
  33. Tsegaye, T. and Hill, R. L. 1998. Intensive tillage effects on spatial variability of soil physical properties. Soil Sci. 16(2): 143-154.
  34. Warrick A W; Mullen G J; Nielsen D R (1977a). Prediction of the soil-water flux based upon field-measured soil-water properties. Soil Science Society of America Journal, 41, 4–19
  35. Warrick A W; Mullen G J; Nielsen D R (1977b). Scaling field measured soil hydraulic properties using similar-media concept. Water Resources Research, 13, 355–362
  36. Warrick A W; Nielsen D R (1980). Spatial variability of soil physical properties in the field. In: Applications of Soil Physics (Hillel D, ed), pp 319–344. Academic Press, New York
  37. Wilding L P (1985). Spatial Variability: its documentation, accommodation and implication to soil surveys. In: Soil Spatial Variability (Nielsen D R; Bouma J, eds), pp 166–194. Pudoc, Wageningen, the Netherlands
  38. Wu L; Pan L (1997). A Generalized Solution to Infiltration from Single-Ring Infiltrometers by Scaling, Soil Sci. Soc. Am. J. 61:1318-1322