روند آزادسازی آهن و روی بر اثر اکسایش زیستی گوگرد

نوع مقاله : مقاله پژوهشی

نویسندگان

1 دانشجوی سابق کارشناسی ارشد دانشگاه زنجان

2 عضو هیأت علمی موسسه تحقیقات خاک و آب تهران

چکیده

غلظت زیاد یون کلسیم و pH بالا در خاک­های آهکی، باعث کاهش قابلیت جذب عناصر وابسته به pH می­شود. استفاده از گوگرد به عنوان ماده اسیدزا جهت افزایش قابلیت جذب عناصر تثبیت شده همراه با ریزجانداران اکسیدکننده آن (بویژه باکتری‌های تیوباسیلوس) در بسیاری از مناطق دنیا متداول می­باشد. در تحقیق حاضر اثر مایه تلقیح باکتری تیوباسیلوس بر روند اکسایش گوگرد و آزاد شدن آهن و روی، همچنین بهترین زمان آزادسازی این عناصر در خاک­های آهکی مختلف مورد بررسی قرار گرفت. آزمایش حاضر به صورت فاکتوریل در قالب طرح کاملاً تصادفی در سه تکرار با هشت سطح گوگرد (مقداری از گوگرد عنصری که بتواند با 0، 5/2، 5، 10، 20، 30، 40 و 50 درصد مواد خنثی شونده واکنش دهد) و دو سطح مایه تلقیحT0  (بدون تیوباسیلوس) و T1 (مقداری از مایه تلقیح که معادل 104 سلول باکتری در هر گرم خاک است) در دو خاک آهکی انجام شد. پس از اعمال تیمارها، 96 گلدان 5 کیلوگرمی با رطوبت FC در دمای 28 درجه سانتی­گراد به مدت 3 ماه انکوباسیون شد و در فواصل زمانی 0، 15، 30، 60 و 90 روز غلظت سولفات، آهن و روی قابل جذب، pH وEC  خاک اندازه‌گیری شد. نتایج نشان داد با گذشت زمان و با افزایش مقدار گوگرد مصرفی، غلظت سولفات و آهن روند صعودی نشان داد. غلظت آهن در هر دو خاک و غلظت روی در یکی از خاک­ها به تدریج افزایش یافت و پس از 60 روز به حداکثر آهن (087/17 میلی­گرم بر کیلوگرم) و روی (92/1 میلی­گرم بر کیلوگرم) رسید. باکتری تیوباسیلوس به تنهایی اثر معنی‌داری بر میزان آهن قابل جذب نداشته است. همچنین pH خاک به موازات افزایش مقدار گوگرد پس از 60 روز کاهش (27/7) ولیEC  خاک بعد از گذشت 15 روز افزایش یافت که علت آن اکسایش گوگرد در خاک و انحلال کربنات­ها می­باشد.

کلیدواژه‌ها


عنوان مقاله [English]

Effect of Sulfur Biological Oxidation Trend on Release of Iron and Zinc

نویسندگان [English]

  • A. Siami 1
  • H. Besharati 2
1 Former graduate student of Zanjan University
2 Scientific Member, Soil and Water Research Institute, Karaj, Iran;
چکیده [English]

Due to the high levels of Ca++ in soil solutions and high pH values in calcareous and alkali soils that exist in large areas of Iran, the soil nutrients, whose absorptions depend on pH,  will become less available. It has been a common practice in many regions of the world to use elemental sulfur as an acidifying source to lower pH and to improve the availability of some soil nutrients. A major requirement in utilizing elemental sulfur to lower soil pH is the presence and activity of sulfur oxidizing bacteria (especially the Thiobacilli) in the soils. This investigation involved the effects of sulfur rates, Thiobacillus inoculant on sulfur oxidation trend and the subsequent release of iron and zinc in calcareous soils. In this study, a completely randomized factorial experiment was conducted using three replications, eight levels of sulfur, two levels of Thiobacillus inoculant, in two different calcareous soils. During three months incubation period, care was taken to keep the soil moisture at F.C and temperature at 28-30oC. Soil samples were taken at time intervals 0, 15, 30, 60, and 90 days after incubation. Then, soil pH, EC and available sulfate, iron, and zinc were measured in the samples. The analysis of data by SAS software showed that during the experimental period the nutrients availability, such as sulfate and iron, increased in both calcareous soils but available zinc increased in one of the study and reached maximum content 60 days after incubation. Also, application of sulfur increased the concentrations of sulfate, iron, and EC, but decreased soil pH. Additionally, increasing sulfur application rates, increased nutrient concentrations and EC, but decreased soil pH as compared with the control. 

کلیدواژه‌ها [English]

  • Available iron and zinc
  • Nutrient availability
  • Thiobacillus
  • Inoculant
  1. بشارتی،‌ ح. 1377. بررسی اثرات کاربرد گوگرد همراه با گونه‌های تیوباسیلوس در افزایش قابلیت جذب برخی از عناصر غذایی در خاک. پایان‌نامه کارشناسی ارشد دانشکده کشاورزی، دانشگاه تهران. 176 صفحه.
  2. 2003. Sulfate- VS. Elemental sulfur Part ll:Characterstics of S oxidation sou. / URL: http// WWW. Back- To- basics. Net/agrifacts/ pdf/ b2b2 9 b. pdf.
  3. Bardiya, M. C., Narunarula, N. and Vyas, S. R. 1982. Effect of inoculation of Thiobacillus on the Lucerne crop (Madicago Sativa L. ) grown in alkali soils. HAU J. Res., 11(4): 286-290.
  4. Besharati, H., Atashnama, K. and S. 2007. Biosuper as a phosphate fertilizer in a calcareous soil with low available phosphorus. African Journal of Biotechnology 6: 1325-1329.
  5. Bhatti, T. M. and W. Yawar. 2010.Bacterial solubilization of phosphorus from phosphate rock containing sulfur-mud. Hydrometallurgy. 103: 54-59.
  6. Cifuentes, F. R., and W. C. Lindemann. 1993. Organic matter stimulation of elemental sulfur oxidation in calcareous soil. Soil Sci. Soc. Am. J., 57:727-731.
  7. Chi, R., Xiao, C. and H. 2006. Bioleaching of phosphorus from rock phosphate containing pyrite by Acidithiobacillus ferrooxidans. Minerals Engineering 19: 979-981.
  8. Chi, R., Xiao, C., Hang, X., Wang, C. and Y. Wu. 2007. Biodecomposition of rock phosphate containing pyrite by Acidithiobacillus ferrooxidans. Journal of Central South University of Technology. 14:233-238.
  9. Deluca, T. H., E. O. Skogley, and R. E. Engle. 1989. Band-applied elemental sulfur to enhance the phytoavailability of phosphorus in alkaline calcareous soils, Biol. Fert. Soils. 7:346-350.
  10. Garcia, de. La., Fuente, , Carrion, C., Botella, S., Fornes, F., Noguera, V. and  M. Abad.  2007. Biological oxidation of elemental sulfur added to three composts from different feedstocks to reduce their pH for horticultural purposes. Bioresource Technology 98: 3561-3569.
  11. Kalbasi, M., Filsoof, F. and rezai-Nejad. 1988. Effect of sulfur  treatmenton yield and uptake of Fe, Zn and Mn by corn, sorghum and soybean. J. plant Nutrr., 11(6-11): 1353-1360.
  12. Kaplan, M. and Orman, S. 1998. Effect of elemental sulfur and sulfur containing west in calcareouse soil in Turkry. plant Nutr., 21 (8): 1655- 1665.
  13. Kapoor, K., Mishra, M. M., Malik, R. S. and Banger, K. C. 1991. Solubilization of Mussoorie rock phosphate by use of pyrite and Thiobacilli. Ecor., 9(3): 635-637.
  14. Khan, M. I., Ibrahim, M. and Rashid-Ayub, A. 1986. Berseen response to sulfur application. Abstract., 411-426.
  15. Kilham, K. 1994. Soil Ecology. Cambirdge University Press.
  16. Kittmas, H. A., and Attoe, O. J. 1965. Availability of phosphorus in rock phosphate – sulfur fusion. Agronomy J., 57:331-334.
  17. Mahler, R. J., and Maples, R. L. 1986. Response of wheat to sulfur fertilization commun. Soil Sci. Plant Anal. 17: 975-988.
  18. Miller, J. R. 1965. Effect of sulfur and gypsum addition on availability of rock phosphate. Soil. 82: 129-134.
  19. Modaihsh, S., A. AL. Mustafa and A. E. Metwally. 1989. Effect of elemental sulfur on chemical changes and nutrient availability in calcareous soils. Plant and Soil, 116:95-101.
  20. Mohammady Aria, M., Lakzian, A., Haghnia, G. H., Berenji, A. R., Besharati. H. and A. Fotovat. 2010. Effect of Thiobacillus, sulfur and vermicompost on the water-soluble phosphorus of hard rock phosphate. Bioresource Technology 101: 551-554.
  21. Nishanth, D. and D R. Biswase. 2008. Kinetics of phosphorus and potassium release from rock phosphate and waste mica enriched compost and their effect on yield and nutrient uptake by wheat (Triticum aestivum). Bioresource Technology 99: 3342-3353.
  22. Odongo, N., Hyoung, K., Choi, H., Van Straaten, P., McBride, W., and D. Romney. 2007. Improving rock phosphate availability through feeding, mixing and processing with composting manure. Bioresour. Technol. 98: 2911-2918.
  23. Pathiratna, L. S. S., De, U. P., Waidyanatha, S. and O. S. Perirs. 1989. The effect of apatite and elemental sulfur mixtures on growth and p content of centrocema pubescens. Fertilizer Research 21: 37-43.
  24. Rajan, S. S. S. 1983. Effect of sulfur content of phosphate rock/ sulfur granules on the availability of phosphate to plants. Nutr. Cycle Agroecosys 4: 287- 296.
  25. Razeto, B. 1982. Treatment of iron chlorosis in peach trees. J. plant Nutr., 5: 917-922.
  26. M. C., Muchovey, J. J. and J. V. H. Alwares. 1989.Temporal relations of phosphorous fraction in an oxisol amended with rock phosphate and Thiobacillus thiooxidans. Soil Sci.Soc. of Am. J., 53:1096-1100.
  27. Sahu, S. N. and B. B. Jana. 2000. Enhancement of the fertilizer value of rock phosphate engineered through phosphate-solubilizing bacteria. Ecol. Eng. 15: 27-39.
  28. Stamford, N. P., Santos, P. R., Moura, A. M. M. F., Santos, C. E. R. S. and A. D. S. Freitas. 2003. Biofertlizers with natural phosphate sulfur and Acidithiobacillus in Soil with low available p. Scientia Agricola 60: 767-773.
  29. Stevenson, F. J. 1986. Cycles of soil. John Wiley and Sons Inc., New York.
  30. Tabatabai, M. A. 1986. Sulfur in Agriculture. Am. Soc. Agron. Inc., Madison, Wis., USA.
  31. Tate III, R. L. 1995. The sulfur and related biogeochemical cycle. P: 359- 372. In M. Alexander(ed) Soil Microbiology. John Wiley and Sons Inc., New York.
  32. Tisdal, S. L. , W. L. Nelson and   D. Beaton. 1984. Soil Fertility and fertilizers. Fourth edition. Mcmillon Publishing Company, New York.
  33. Tisdal, S.I., W. I. Nelson, J. D. Beaton, and J. I. Havlin. 1993. Soil Fertility and Fertilizer. 5th Mc millan. Pub. Co., New York.
  34. Vishniac, W. and Santer, M. 1957. The Thiobacilli. Bacteriol. Rev., 21: 195-213.
  35. Wainwright, M. 1984. Sulfur oxidation in soils. Advances in Agronomy. 37: 346-396.
  36. Wang, Y.P., Li, Q. B., Hui, W., Shi, J. Y., Lin, Q., Chen, X. C. and Y. X. Chen. 2008. Effect of sulfur on soil Cu/Zn availability and microbial community composition. Journal of Hazardous Materials 159: 385-389.