مطالعه کانی‌های رسی در خاک‌های تشکیل شده بر روی مواد مادری لسی در یک توالی اقلیمی در استان گلستان

نوع مقاله : مقاله پژوهشی

نویسندگان

1 دانش آموخته کارشناسی ارشد گروه علوم خاک، دانشگاه علوم کشاورزی و منابع طبیعی گرگان

2 دانشیار گروه علوم خاک ، دانشگاه علوم کشاورزی و منابع طبیعی گرگان

3 استادیار گروه علوم خاک دانشگاه علوم کشاورزی و منابع طبیعی گرگان

4 دانشیار گروه اصلاح نباتات و بیوتکنولوژی دانشگاه علوم کشاورزی و منابع طبیعی گرگان

چکیده

این تحقیق به منظور بررسی نقش پارامترهای اقلیمی (دما و بارندگی) برروی خصوصیات خاک‌ها و مطالعه تغییر و تحول کانی‌های رس در استان گلستان انجام شد. منطقه مطالعاتی به­گونه­ای انتخاب گردید تا یک توالی اقلیمی بر روی مواد مادری لسی وجود داشته باشد. به همین منظور یک ردیف اقلیمی به طول 80 کیلومتر در محدوده جغرافیایی ′′56 ′16 °55 تا ′′46 ′55°54 طول شرقی و ′′28 ′03 °37 تا ′′26 ′30 °37 عرض شمالی انتخاب گردید. در منطقه مطالعاتی محدوده­های دارای سه رژیم رطوبتی اریدیک، زریک و یودیک و دو رژیم حرارتی مزیک و ترمیک تعیین و در آن­ها 7 نیمرخ خاک حفر گردید. از کلیه افق­های ژنتیکی و مورفولوژیکی نمونه­برداری شد و در نمونه­های جمع­آوری شده بافت خاک، واکنش عصاره اشباع خاک، مقدار هدایت الکتریکی عصاره اشباع خاک(ECe) ، مقدار کربن آلی، مقدار کربنات­کلسیم معادل (آهک) و مقدار ظرفیت تبادل کاتیونی خاک (CEC) تعیین گردید. برای جداسازی ذرات رس خاک از روش‌های کیتریک و هوپ استفاده شد. نتایج نشان داد که با افزایش بارندگی و کاهش دما بر تکامل خاک‌ها افزوده شده است. در محدوده دارای رژیم رطوبتی اریدیک خاک‌های جوان انتی­سولز و اریدی­سولز، در محدوده دارای رژیم رطوبتی زریک خاک‌های اینسپتی­سولز و مالی­سولز با درجه تحول کم و در محدوده دارای رژیم رطوبتی یودیک خاک‌های تکامل یافته‌تر مالی­سولز با افق زیر سطحی آرجیلیک و کلسیک تشکیل شده­اند. بررسی منحنی پراش نگار اشعه ایکس ذرات رس خاک­ها وجود کانی‌های ایلیت، کلریت، اسمکتیت، ورمی‌کولیت، کائولینیت و کانی‌های مخلوط را نشان داد. تفسیر منحنی­های پراش نگار اشعه ایکس نشان داد که کانی­های ایلیت، کلریت و کائولینیت کانی‌های غالب را در خاک­های این مناطق تشکیل می‌دهند. مقدار کانی­های ایلیت و کلریت با شاخص اقلیمی رابطه معکوس نشان داد اما رابطه شاخص اقلیمی با کانی اسمکتیت مثبت بود. در منطقه دارای رژیم رطوبتی اریدیک بیشتر کانی‌های به ارث رسیده منشأ مواد مادری داشته و در مناطق دارای رژیم­های رطوبتی مرطوب­تر زریک و یودیک بر مقدار کانی‌های رسی تشکیل شده متأثر از تحولات خاک­سازی افزوده شده است. کانی ورمی‌کولیت فقط در نیمرخ شماره 1 (رژیم یودیک) وجود داشته است و در سایر نیمرخ‌ها به­دلیل واکنش قلیایی خاک، وجود Si4+، Mg2+ و حلالیت کم Al3+ ناپایدار است.

کلیدواژه‌ها


عنوان مقاله [English]

Studying Clay Minerals in Soils Formed on Loess Parent Materials in a Climatic Gradient in Golestan Province

نویسندگان [English]

  • M. Zeraat Pishe 1
  • F. Khormali 2
  • F. Kiani 3
  • M. H. Pahlavani 4
1 Former M.Sc. Student, Gorgan University of Agricultural Sciences and Natural Resources. College of Agriculture. Soil Science Department
2 Associate Professor, Gorgan University of Agricultural Sciences and Natural Resources. College of Agriculture. Soil Science Department
3 Assistant Professor, Gorgan University of Agricultural Sciences and Natural Resources. College of Agriculture. Soil Science Department
4 Assistant Professor, Gorgan University of Agricultural Sciences and Natural Resources. College of Agriculture. Plant Breeding and Biotechnology Department
چکیده [English]

This study was conducted in order to evaluate both temperature and rainfall (climatic factors) effects on soil properties and transformation of clay minerals. A climatic gradient was selected about 80 km in length, located between 55° 16 ′56 ′′to 54° 55′ 46′′ longitude and 37° 03′ 26′′ to 37° 30 ′26′′ latitude in Golestan Province, from mountainous area in the south to the coastal plain of Caspian Sea in the north. Soil moisture and temperature regime varies across this climatic gradient as, respectively, udic, xeric, aridic, mesic and thermic. Seven soil profiles were studied on loess parent materials. Soil horizons were sampled for laboratory analysis. Soil characteristics including texture, pH, EC, organic carbon, CaCO3 and CEC were measured in the collected samples. Clay minerals were separated using sedimentation method. Results showed that there was a good positive relationship between soil development stages and rainfall increase and reverse with temperature decrease. In the areas dominated by aridic soil moisture regime, Entisols and weakly developed Aridisols prevailed, while in the areas with udic soil moisture regime, highly developed Mollisols with an argillic and calcic subsurface horizons were formed. Mineral studies showed that Illite, Chlorite, and some Kaolinite were the dominant clay minerals in the soils. Mineralogical studies showed that mineral composition of the clay fraction in the soils were, respectively, Illite, Chlorite, Smectite, Vermiculite, Kaolinite, and Interstratified clay minerals. Good reverse relationship occurred between Illite and Chlorite content of the soils with climatic index (P/ET°), however, Smectite had a positive relation. In arid region, clay minerals were mostly inherited from parent material. Vermiculite was merely found in the soils distributed in the region with udic soil moisture regime (profile 1). It seems that Vermicullite is unstable in other soil moisture regime condition because of high soil reaction

کلیدواژه‌ها [English]

  • Clay mineralogy
  • Soil evolution
  • Climate
  • Moisture and temperature regime
  1. امینی ج.، ح.، م. ی. ناصری.، خرمالی، ف. و س. ع. موحدی نائینی. 1388. تغییر در خواص و مشخصات خاک ناشی از موقعیت­های مختلف اجزا زمین­نما در خاک­های با مواد مادری لسی در دو اقلیم متفاوت در استان گلستان. مجله پژوهش­های حفاظت آب و خاک. جلد شانزدهم، شماره اول. صفحه 1-17.
  2. اولیایی، ح. ر.، و ع. ابطحی. 1382. کانی شناسی رس خاک­های انتخاب شده در استان کهکیلویه و بویراحمد. هشتمین کنگره ملی علوم خاک. دانشگاه گیلان.
  3. پاشایی، ع. 1376. بررسی خصوصیات فیزیکی و شیمیایی و چگونگی خاستگاه رسوب­های لسی در منطقه گرگان و دشت. مجله علوم زمین. سال ششم. صفحات 78-67.
  4. حق نیا، غ. ح. 1374. خاک شناخت. انتشارات دانشگاه فردوسی مشهد. 630 صفحه.
  5. حق نیا، غ. ح.، و الف. لکزیان. 1375. پیدایش و طبقه­بندی خاک. ترجمه. انتشارات دانشگاه فردوسی مشهد. 616 صفحه.
  6. خرمالی، ف.، و ر. قربانی.   منشأ و پراکنش کانی‌های رسی در خاک‌های سه منطقه اقلیمی شرق استان گلستان. مجله علوم کشاورزی و منابع طبیعی. جلد شانزدهم، شماره سوم. صفحه 27-38.
  7. درویش زاده، الف. 1370. زمین­شناسی ایران. انتشارات دانش امروز. 901 ص.
  8. رامشنی، خ.، و ع. ابطحی. 1374. تأثیر اقلیم و توپوگرافی در تشکیل، تکوین و خصوصیات مورفولوژیکی خاک­های منطقه کهکیلویه گرمسیری در استان فارس. چکیده مقالات چهارمین کنگره علوم خاک ایران. دانشگاه صنعتی اصفهان. صفحه 88.
  9. محمدی، م. ح.، ش. محمودی، و م. ی. ناصری. 1380. بررسی تأثیر پستی­و بلندی و اقلیم بر توزیع کانی‌های رسی در نیمرخ خاک و طول ترانسکت در منطقه خشک تا نیمه مرطوب گرگان. چکیده مقالات هفتمین کنگره علوم خاک ایران، دانشگاه شهرکرد. صفحات 202-200.
  10. ملکوتی، م. ج.، و م. همایی. 1373. کتاب حاصلخیزی خاک­های مناطق خشک. انتشارات دانشگاه تربیت مدرس. 494 صفحه.
  11. Abtahi, A. 1980. Soil genesis as affected by topography and time in calcareous parent materials. Soil. Sci. Soc. Am. J. 44: 329-336.
  12. Allen, B. L., and B. F. 1989. An introduction to soil mineralogy. In: Dixon, J. B. and S. B. Weed. (eds.), Minerals in Soil Environments, 2nd ed. SSSA Book Ser. Madison, WI. pp. 199-278.
  13. Bouyoucos, G. 1962. Hydrometer method improved for making particle size analysis of soils. Agron. Jour. 54: 464-465.
  14. Chapman, H. D. 1965. Cation exchange capacity. In: Methods of Soil Analysis. Part 2. Black, C. A. (ed.). American Society of Agronomy, Madison, Wisconsin, USA.
  15. Day, P. R. 1955. Particle fractionation and particle-size analysis. In: Black, C. A. (ed.), Methods of Soil Analysis. Part I. Agronomy 9, Soil Sci. Soc. Am. Madison, WI. pp. 545-567.
  16. Dixon, J. B. 1989. Kaolin and Serpentine group minerals In: J. B. Dixon, and S. B. Weed (ed.) Minerals in soil environments. Soil. Sci. Soc. Am. J. Madison. Wisconsin; 551-634.
  17. Franzluebbers, A. J. 2002. Soil organic matter stratification ratio as an indicator of soil quality. Soil Tillage Res. 66: 95–106.
  18. Givi, J., and A. Abtahi. 1985. Soil genesis as affected by topography and depth of saline and alkaline groundwater under semiarid conditions in southern Iran. Iran Agricultural Research, 4: 11-27.
  19. Grim, R. E. 1968. Clay mineralogy. 2th edition. McGrow Hill Book Company, New York, 596 p.
  20. Gunal, H., and D. Ransom. 2006. Genesis and micromorphology of loess-derived soils from central Kansas. Catena. 65: 222-236.
  21. Jackson, M. L. 1975. Soil chemical analysis. advanced course. University of Wisconsin, College of Agriculture, Department of Soils, Madison, Wisconsin, USA.
  22. Johns, W. D., R. E. Grim., and W. F. Bradley. 1954. Quantitative estimation of clay minerals by diffraction methods. J. Sediment Petrol. 24: 242-251.
  23. Khormali, F., A. Abtahi., S. Mahmoodi., and G. Stoops. 2003. Argillic horizon development in calcareous soils of arid and semiarid regions of southern Iran. Catena, 53: 273-301.
  24. Khormali, F., M. Ajami., and S. Ayoubi. 2006. Genesis and micromorphology of soils with Loess parent material as affected by deforestation in a hillslope of Golestan Province. Iran. 18th International Soil Meeting (ISM) on Soil Sustaining Life on Earth, Mananging soil and Technology. 149-151.
  25. Khormali, F., and A. Abtahi. 2003. Origin and distribution of clay minerals in calcareous soils of arid and semiarid regions of southern Iran. Clay Minerals. 53. 273-301.
  26. Kittrick, J. A., and E. W. Hope. 1963. A procedure for particle size separation of soils for X-ray diffraction analysis. Soil Science. 96: 312-325.
  27. Li, L., G. Keller., T. Adatte., and W. Stinnesbeck. 2000. Late Cretaceous sea level changes in Tunisia: A Multi-disciplinary Approach. Special publication 157, Geological Society of London, pp. 447-458.
  28. Mays, M. D., W. D. Nettleton., R. S. B. Greene., and J. A. Mason. 2003. Dispersibility of glacial loess in particle size analysis, U.S.A. Aust. J. Soil Res. 41:229-244.
  29. Miller, M. B., T. H. Cooper., and R. H. Rust. 1993. Diffraction of an eluvial fragipan from dence glacial till in nouthern Minnesota. Soil. Sci. Soc. Am. J. 57: 787-796.
  30. Moore, D. M., and R. C. Reynolds. 1997. X-ray diffraction and the identification and analysis of clay minerals (2nd Ed). Oxford University Press, Oxford. 387 pp.
  31. Page, A. L., R. H. Miller., and D. R. Keeney. 1982. Methods of Soil Analysis. Part 2. Chemical and Microbiological Properties, second ed. Agronomy Monographs, 9. ASA-SSA, Madison.
  32. Parton, W. I., W. J. Schimel., D. S. Cole, and D. S. Ojima.1987. Analysis of factors controlling soil organic matter levels in Great Plains grasslands. Soil Sci. Soc. Am. J. 51: 1173-1179.
  33. Singer, A. 1989. Illite in the hot-aridic soil environment. Journal of soil science. 147: 126-133.
  34. Soil Survey Staff. 1999. Keys to Soil Taxonomy. USDA, NRCS.
  35. Soil Survey Staff. 2010. Keys to Soil Taxonomy, 11th U. S. Department of Agriculture.
  36. Walkley, A., and I. A. Black. 1934. An examination of the Degtjareff method for determining soil organic matter and a proposed modification of the chromic acid titration method. Soil Sci. 37:29-38.
  37. Wilson, M. J. 1999. The origin and formation of clay minerals in soils: past, present and future perspectives. Clay Minerals, 34: 7-24.