تغییرات زمانی فرآیندهای تخریب و پاشمان در خاک مارنی تحت باران شبیه‌سازی شده

نوع مقاله : مقاله پژوهشی

نویسندگان

1 استادیار گروه خاکشناسی دانشکده کشاورزی دانشگاه زنجان

2 دانشجوی کارشناسی ارشد خاکشناسی دانشگاه زنجان

چکیده

فرآیندهای تخریب خاکدانه­ها و پاشمان ذرات خاک از مهم­ترین پیامدهای برخورد قطرات باران بر سطح خاک می­باشند. این تحقیق به ­منظور بررسی تغییرات زمانی فرآیندهای تخریب و پاشمان در خاک بکر مارنی در استان زنجان انجام گرفت. آزمایش در هشت تیمار زمان بارندگی با سه تکرار در قالب طرح کاملا تصادفی در سال 1389 انجام شد. برای این منظور پس از جمع­آوری خاکدانه­های با قطر 6 تا 8 میلی­متر، خاکدانه­ها در 24 جعبه­ مسطح به ابعاد 30 سانتی­متر در 40 سانتی­متر قرار داده شدند. جعبه­ها در فواصل زمانی مختلف (5/7، 15، 5/22، 30، 5/37، 45، 5/52 و 60 دقیقه) زیر دستگاه شبیه­ساز باران با شدت ثابت 40 میلی­متر بر ساعت قرار گرفتند. میزان تخریب با مقایسه میانگین وزنی قطر خاکدانه­ها قبل و بعد از بارندگی به روش الک خشک و میزان پاشمان از جمع­آوری ذرات خاک پراکنده شده در اطراف جعبه­ها طی هر رخداد بارندگی و تعیین وزن خشک آن­ها به دست آمد. بر اساس نتایج رابطه مثبت معنی­داری بین زمان بارندگی و تخریب خاکدانه (01/0, p< 99/0R2=) و نیز پاشمان ذرات خاک (05/0, p< 95/0R2=) وجود داشت. در ابتدای بارندگی (5/7) دقیقه میزان تخریب خاکدانه­ها بیشتر از پاشمان ذرات خاک بود. با تداوم بارندگی، میزان پاشمان نیز به دنبال تخریب خاکدانه­ها افزایش یافت و در زمان 45 دقیقه به دلیل تخریب بیشتر خاکدانه­ها، سله در سطح نمایان شد. در این زمان، میزان تخریب و پاشمان تقریباً به اوج رسید. پس از این زمان، تشکیل سله از تخریب بیشتر خاکدانه­ها و تا اندازه­ای از پاشمان بیشتر ذرات جلوگیری کرد. بین میزان پاشمان ذرات و تخریب خاکدانه­ها رابطه مثبت معنی­دار (05/0, p< 98/0R2=)وجود داشت.

کلیدواژه‌ها


عنوان مقاله [English]

Temporal Variations of Aggregates Breakdown and Splash Particles Processes in a Marl Soil Under Simulated Rainfall

نویسندگان [English]

  • Ali Reza Vaezi 1
  • A. Rostami 2
  • M. H. Mohammadi 1
1 Assistant Prof.essor of soil science department, Faculty of Agriculture, Zanjan University
2 M. S. c student of soil science of Zanjan University
چکیده [English]

Aggregate breakdown and splash particles are the most important results of raindrops impact on soil surface. The study was conducted to investigate the temporal variations of breakdown and splash processes in a virgin marl soil in Zanjan Province. The experiment was carried out as a completely randomized design with eight rainfall duration treatments and three replications, in 2010. Twenty four flat boxes with dimensions of 30 cm× 40 cm were filled with soil aggregates (6-8 mm). The aggregates boxes were placed under a rainfall simulator with a constant intensity of 40 mm h-1.The aggregate breakdown values was obtained based on comparison of the mean weight diameter of the aggregates before and after rainfall events. The splash values were determined from the dry weight of soil particles that had splashed out around the boxes during each rainfall event. Based on the results, there were significant relationships between the rainfall duration and both the aggregate breakdown (R2= 0.99, p<0.01) and the particles splash (R2=0.95, p<0.05). The aggregate breakdown value was low at the beginning of rainfall (7.5 min), but it increased with increasing rainfall duration and, subsequently, soil surface was crusted in 45 min. At this time, aggregate breakdown and particles splash values were almost maximized. After 45 min, aggregate breakdown and particles splash values were negligibly increased due to crust formation at soil surface. There was a significant relationship between the particles splash and the aggregate breakdown (R2=0.98, p<0.05). 

کلیدواژه‌ها [English]

  • Aggregate breakdown
  • Splash particles
  • Rainfall duration
  • Particles detachment
  • Aggregate mean weight diameter
  1. آزموده، ع. کاویان، ع. سلیمانی، ک. و وهاب زاده، ق. 1389. مقایسه میزان رواناب و فرسایش در خاکهای تحت پوشش کاربری های جنگل، زراعی و باغ با استفاده از شبیه ساز باران. مجله آب و خاک، جلد24، شماره 3، صفحه 490-500.
  2. بافکار، ع. و مجردی، ح. 1385. حفاظت آب و خاک. انتشارات دانشگاه رازی، صفحه 11 تا 35.
  3. پیروان، ح و اسدی، ت. ١٣٨٤. مروری بر نقش عوامل فیزیکی- شیمیایی موثر بر اشکال فرسایش در پهنه­های مارنی. نهمین کنگره علوم خاک ایران، کرج، ٦ تا ٩ شهریور، صفحه ٥٦٠ تا ٥٦٢.
  4. تمرتاش، ر. ریحانی، ب. طاطیان، م. و رضایی­پاشا، م. ١٣٨٦. مطالعه ارتباط خصوصیات شیمیایی خاکهای مارنی با پوشش گیاهی در شهرستان بیرجند. مجموعه مقالات دهمین کنگره علوم خاک ایران، کرج ٤ تا ٦ شهریور، صفحه ٢٤٦.
  5. خالدیان، ح. ١٣٨٦. اندازه گیری فرسایش پاشمانی با استفاده از کاسه پاشمان. مجموعه مقالات دهمین کنگره علوم خاک ایران، ص ١١٩٠.
  6. رفاهی، ح. ١٣٨٥. فرسایش آبی وکنترل آن. چاپ پنجم، انتشارات دانشگاه تهران، صفحه ٢٧-١٣٢.
  7. زنگی آبادی، م. رنگ آور، ع. رفاهی، ح. ق. شرفا، م. و بی­همتا، م. 1389. بررسی مهمترین عوامل تأثیرگذار بر فرآیند فرسایش خاک در مراتع نیمه خشک کلات. مجله آب و خاک، جلد 24، شماره 4، صفحه 737-744.
  8. سازمان جهاد کشاورزی استان زنجان. 1381. مدیریت آبخیزداری، طرح مطالعات تفصیلی- اجرایی حوزه آبخیز سرچم استان زنجان.
  9. شهبازی، ع. یزدی­پور، ع. و رئوفی، م. 1388. بررسی تأثیر پلی اکریل آمید بر برخی خصوصیات فیزیکوشیمیایی خاک و ظهور جوانه های کلزا در خاک مستعد تشکیل سله. مجله آب و خاک، جلد23، شماره 2، صفحه 38-45.
  10. علیرضایی، ح. ١٣٨٤. طرح طبقه­بندی مرفوکلیماتیک آبکندهای استان همدان، سازمان تحقیقات و آموزش کشاورزی، وزارت جهاد کشاورزی، طرح با کد ٠٢-٠٥٠٠١٢٢٠٠٠-٨٢
  11. واعظی، ع. بهرامی، ح. صادقی، ح. و مهدیان، م. 1386. بررسی ویژگیهای فیزیکوشیمیایی موثر بر پایداری خاکدانه در خاکهای آهکی. مجموعه مقالات دهمین کنگره علوم خاک ایران، کرج، 6 تا 9 شهریور، صفحه 980
  12. Barry, D.A, Sander, G.C, Jomaa, S, Heng, B.C.P, Parlange, J.Y, Lisle, I.G and Hogarth, W.L. 2010.Exact solutions of the Hairsine-Rose precipitation-driven erosion model for a uniform grain size soil. Journal of Hydrology 389 (3–4): 399–405.
  13. Canga, M.R. 1999. Effects of subsequent simulated rainfall on runoff and erosion Tr.T.of Agriculture and Forester. 23: 659.665.
  14. Day, R. 1965. Particle fractionation and particle size analysis. In: A. Black et al (ed). Methods of soil analysis. Part 1. P: 595-566. Ser. No 9. ASA. Madison.WS.
  15. Fernandez-Raga, M, Fraile, R, Keizer, J¸ Eufemia, M and Castro, A. 2009. The Kinetic energy of rain measured with an optical disdrometer: An application to splash erosion in Leon (Spain). Atmosphere Researchs 93: 619–
  16. Flanagan, D. 2002. In: Lal, R. (Ed.), Erosion Encyclopedia of Soil Science. Marcel Dekker, New York, pp. 395–398.
  17. Giovannini, G¸ Valijo, R¸ Lucchesi, S¸ Bautista, S¸ Ciompi, S and Liovet, J. 2001. Effects of land use and eventual fire on soil erodibility in dry Mediterranean condition. Forest Ecology and Management 147: 15-23
  18. Jin, K, Cornelis, W.M, Gabriels, D. 2008. Soil management effects on runoff and soil loss from field rainfall simulation. Catena 75: 191–199.
  19. Julien, P. Y. 1995. Erosion and sedimentation. Cambridge University Press, 280 p.
  20. Kemper, W.D and Rosenau, R. 1986. Aggregate stability and size distribution. In: Klute A. (ed). Methods of soil Analysis. Part 1. Physical and Mineralogical Methods.
  21. Legout, C., Legue´dois, S.¸ Le Bissonnais, Y and Malam Issa¸ O. 2005. Splash distance and size distributions for various soils. Geoderma 124: 279–292.
  22. Page, M.C, Sprrks, D.L, Noll, M.R. 1987. Kinetics and mechanisms of potassium release from sandy middle Atlantic Plain soils. Soil Science Socince of America Journal 51: 1460-1465.
  23. Ruiz-Sinoga, J.D and Romero-Diaz, A. 2010. Soil degradation factors along a Mediterranean pluviometric gradient in southern spain. Geomorphology 118(3-4): 359-368.
  24. Steiner, K.G. 1996. Causes of soil degradation and development approaches to sustainable soil management. (English version by Richard Williams). CTZ, Margraf Verlag.
  25. 1972. Soil survey laboratory methods and procedures for collecting soil samples. Report No 1: 63 pp.
  26. Valettea, S., Prevosta, Laurent, L., Lucasa., J. 2006. SoDA project: A simulation of soil surface degradation by rainfall. Gilles Computers & Graphics 30: 494–506
  27. van Dijk, A.I.J, Meesters, A.G.C and Bruijnzeel, A. 2002. Exponential distribution theory and the interpretation of splash detachment and transport experiments. Soil Science Society of America Journal 66: 1466–1474.
  28. Walkly, A., and Black, I.A. 1934. An examination of digestion methods for determining soil organic matter and a proposed modification of the chromic and titration. Soil Science Society of America 37: 29-38.
  29. Wangemann, S. G., Kohl, R. A. and Molumeli, P. A. 2000. Infiltration and percolation influenced by antecedent soil water content and air entrapment. Trans. ASAE 43:1517–1523.
  30. Yoder, R. E. 1936. A direct method of aggregate analysis and a study of a physical nature of erosion losses. Journal of American Agronomy, 28: 337-351.
  31. Zheng, F.L. 2005. Effects of accelerated soil erosion on soil nutrient loss after deforestation on the loess plateau. Pedosphere 15(6): 707-715.