تأثیر شوری بر کارایی همزیستی سینوریزوبیوم‌ملیلوتی با ارقام مختلف یونجه

نوع مقاله : مقاله پژوهشی

نویسندگان

1 دانشجوی سابق کارشناسی‌ارشد دانشگاه زنجان

2 عضو هیأت علمی مؤسسه تحقیقات خاک و آب تهران

3 عضو هیأت علمی پژوهشکده تحقیقات کشاورزی، پزشکی و صنعتی پژوهشگاه علوم و فنون هسته‌ای

چکیده

این آزمایش به منظور بررسی تأثیر شوری بر جذب برخی عناصر غذایی و همزیستی سینوریزوبیوم­ملیلوتی با سه رقم یونجه (Medicago sativa) به صورت فاکتوریل با طرح پایه کاملاً تصادفی در سه تکرار اجرا شد تا اثرات شوری­های مختلف نمک­های کلرید سدیم، کلرید منیزیم و کلرید کلسیم (0 ، 6 و 12 دسی­زیمنس بر متر) بر شاخص­های رشد و جذب برخی عناصر غذایی سه رقم یونجه (همدانی، قره­یونجه و قارقالوق) در سه سطح تلقیح (بدون باکتری، باکتری مقاوم به شوری و باکتری حساس به شوری) مورد تحقیق قرار گیرد. سطوح باکتری پس از جداسازی و خالص­سازی باکتری­های همزیست یونجه از مزارع زیر کشت ارقام یونجه در استان تهران دو جدایه مقاوم و حساس به شوری که جزء باکتری­های خیلی مؤثر از لحاظ همزیستی بودند، انتخاب شد. تجزیه و تحلیل داده­های بدست آمده نشان داد که با افزایش شوری، وزن خشک ریشه و اندام هوایی، تعداد گره­های فعال، غلظت نیتروژن، فسفر، پتاسیم به طور معنی­داری (در سطح 1%) کاهش یافت در حالی­که مقدار سدیم گیاه افزایش معنی­دار (در سطح1%) را نشان داد. تلقیح با باکتری سینوریزوبیوم ملیلوتی مقاوم به شوری باعث افزایش معنی­دار وزن خشک ریشه و اندام هوایی، تعداد گره­های فعال، غلظت نیتروژن، پتاسیم، فسفر و کاهش معنی­دار سدیم در گیاه یونجه شد. بین ارقام مختلف از لحاظ عملکرد و سایر شاخص­ها در شرایط شور تفاوت معنی­داری وجود نداشت.

کلیدواژه‌ها


عنوان مقاله [English]

Effect of Salinity on Nutrients Absorption and Symbiosis between Sinorhizobium meliloti and Different Genotypes of Alfalfa

نویسندگان [English]

  • A. Fazaeli 1
  • Hossein Besharati 2
  • N. Pirvali Biranvand 3
1 M.Sc. student of Soil Science Zanjan University
2 Assistant Professor Soil and Water Research Institute
3 Faculty Member Nuclear Science and Technology Research Institute
چکیده [English]

The purpose of this experiment was to study the effect of salinity on absorption of some nutrition elements and the symbiosis of Sinorhizobium meliloti   with different clones of alfalfa. Strains of Sinorhizobium meliloti were isolated from alfalfa fields in Tehran Province. After the isolation and purification processes, alfalfa seeds were inoculated with the efficient strains of symbiotic Sinorhizobium meliloti. Finally, 2 strains were selected, one of which was resistant and the other was sensitive to salinity. The effect of inoculation with these strains were investigated on the growth and the yield of 3 medicago sativa Genotypes (Hamadani, Gharayonjeh and Gharghalogh) at 3 levels of salinity (EC= 0, 6, 12 dS/m), using a completely randomized block designed in factorial form with 3 replications. Results showed that with increase in salinity, shoot and root dry weight, nodule number, and the plants concentration of nitrogen, phosphorus, and potassium decreased significantly, whereas the concentration of sodium increased. In addition, according to the results, inoculation with the Sinorhizobium meliloti strain resistant to salinity caused significant increase in shoot and root dry weight, nodule numbers, and the concentration of nitrogen, potassium, and phosphorus in comparison to the control. There were no significant differences between the alfalfa genotypes in yield or other growth indices

کلیدواژه‌ها [English]

  • Salinity
  • Medicago sativa
  • Nutrient absorption
  • Sinorhizobium meliloti
  1. ابوالحسنی، م. 1386. مطالعه جدایه­های بومی سینوریزوبیوم ملیلوتی مقاوم به شوری و خشکی در خاک­های استان کرمان، دهمین کنگره علوم خاک ایران، کرج.
  2. امامی، ع. 1375. روش­های تجزیه گیاه. نشریه فنی شماره 982. جلد اول. موسسه تحقیقات خاک و آب، تهران. ایران.
  3. برین، م.، ن. علی اصغرزاده و صمدی، ع. 1385. اثر شوری حاصل از کلرید سدیم و مخلوط املاح بر غلظت پرولین و برخی شاخص های رشد گوجه فرنگی در همزیستی با قارچ های میکوریز آربوسکولار. مجله علوم کشاورزی ایران، جلد 37، شماره 1، صفحات 147-139.
  4. حیدری­شریف­آباد، ح. 1380. گیاه و شوری. انتشارات موسسه تحقیقات جنگل­ها و مراتع. تهران. ایران. 199 صفحه. 15
  5. رستگار، م. ع. 1384. زراعت نباتات علوفه­ای. انتشارات برهمند، تهران.
  6. گالشی، س. 1380. تأثیر تنش شوری بر کارایی تثبیت بیولوژیکی ازت در یونجه (Medicago sativa). مجله علوم و صنایع کشاورزی، شماره 10، صفحات 11-3.
  7. گالشی، س. و ا. سلطانی. 1381. ارزیابی رشد و تثبیت بیولوژیک نیتروژن و تحمل به شوری پنج رقم شبدر زیرزمینی. مجله علوم کشاورزی و منابع طبیعی، سال نهم، شماره سوم، صفحات 83-71.
  8. A., and J. D. Dubois. 2003. The effect of NaCl on growth, N2 fixation (acetylene reduction), and percentage total nitrogen in Leucaena leucocephala (Leguminosae) Var. K. 81. J. Bot. 90(5): 683-692.
  9. Ashraf, M. 2004. Som important physiological selection criteria for salt tolerance in plants. Flora. 199:361-376.
  10. Basra, A. S. and R. K. Basra. 1997. Mechanism of environmental stress resistance in plants. Harward Academic Publishers. p: 83-111.
  11. Beck, D. P., L. A. Materon, and F. Afandi. 1993. Practical Rhizobium–legume Technology Manual. Technical Manual. No.19. ICARDA, Aleppo.
  12. Bekki, A., J. C. Trinchant, and J. Rigaud. 2006. Nitrogen fixation (C2H2 reduction) by Medicago nodules and bacteroids under sodium chloride stress. J. Plant Physiol. 71:61 – 67.
  13. Bernstein, L. and G. Ogata. Effects of salinity on nodulation, nitrogen fixation and growth of soybeans and alfalfa. Agron. J. 58:201-203.
  14. Bordeleau, L. M. and D. Provest. 1994. Nodulation and nitrogen fixation in exzeme environments. Plant. Soil. 161:pp. 115-125.
  15. Cordovilla, M. D. P., F. Ligero and C. Lluch. 1999. Effect of salinity on growth, nodulation and nitrogen assimilaton in nodules of faba bean (Vicia faba L.). J. Appl. Ecol. 11: 1-7.
  16. Cordovilla, M. D. P., A. Ocana, F. Ligero and C. Lluch. 2003. Salinity on growth analysis and nutrient composition in four grain legumes-Rhizobium symbiosis. J. Plant Nutr. 18: 1595-6109.
  17. Cottenie, A. 1980. Soil and plant testing as a basis of fertilizer Recommendation.
  18. Djilianov, D., E. Prinsen, S. Oden, H. V. Onckelen, and J. Muller. 2003. Nodulation under salt stress of alfalfa lines obtained after in vitro selection for osmotic tolerance. J. Plant Physiol. 165: 887-894.
  19. Dunin, F. X., C. J. Smith, S. J. Zegelin, R. Leuning, O. T. Denmead, and R. Poss. 2001. Water balance changes in a crop sequence with lucerne. J. Agric. Res, 52: 247-261.
  20. Fougere, F., D. L. Rudulier, and J. G. Streeter. 1991. Effect of salt stress on amino acid, organic acid, and carbohydrate composition of roots, bacteroids, and cytosol of Alfalfa ( Medicago sativsa L.). J. plant  96: 1228-1236.
  21. Graham, P. H. 1981. Some problems of nodulation and symbiotic nitrogen fixation in Phaseolus vulgaris L.: a review. Field Crops Res. 4:93-112.
  22. Graham, P. H., and C. P. Vance. 1999. Nitrogen fixation in perspective :an overview of research and extension needs. Field Crops Res. 65: pp. 93-106.
  23. Homaee, M., R. A. Feddes, and C. Dirksen. 2002. A macroscopic water extraction model for non uniform transient salinity and water stress. Soil Sci. Soc. Am. J. 66: 1764-1772.
  24. J. 1883. A new method for the determination of nitrogen in organic bodies. Anal. Chem. 22: 366.
  25. Khan, M. G., M. Silberbush, and S. H. Lips. 1998. Response of alfalfa to potassium, calcium and nitrogen under stress induced by sodium chloride. Biol. Plant . 40:251-259.
  26. Lakzian, A., P. Murphy, and K. E. Giller. 2007. Transfer and loss of naturally-occurring plasmids among isolates of Rhizobium leguminosarum bv. viciae in heavy metal contaminated soils. Soil Biol. Biochem. 39, 1066–1077.
  27. Mabood, F., and D. L. Smith. 2005. Pre-incubation of Bradyrhizobium japonicum with jasmonates accelerates nodulation and nitrogen fixation in soybean (Glycine max L.) at optimal and suboptimal root zone temperatures. Physiologia Plantarum, 125: 311-323.
  28. Mass, E. V., and G. J. Hoffman. 1977. Crop salt tolerance-current assessment. J. Irrig. Drain. 103: 115-134.
  29. Merchan, F., C. Breda, J. Perez Hormaeche, C. Sousa, A. Kondorosi, O. Mario Aguilar, M. Megias, and M. Crespi. 2003. A kruppel- like transcription factor gene is involved in salt stress responses in Medicago spp. Plant. Soil. 257: 1-9.
  30. Pazira, E., and M. Homaee. 2003. Salt affected resources in Iranian extension and reclamation. Water-Saving Agriculture and Sustainable Use of Water and Land Resources. 855-865.
  31. Shannon, M., 1984. Breeding selection and genetics of salt tolerance. In: Staples, R. C., Toenniessen, G. H. (eds.), Salinity tolerance in plants. Strategies for Crop Improvement. Wiley, New York. pp. 300-308.
  32. Singleton, D. W., and B. B. Bohlool. 1984. Effect of salinity on the nodule formation by soybean. Plant. Physiol. 74:pp. 72-76.25
  33. Sprent, J. I. and P. Sprent. 1990. Nitrogen fixing organism pure and applied aspects. Chapman and Hall, London.
  34. Tawfik, K. M. 2008. Evaluating the Use of Rhizobacterin on Cowpea Plants Grown under Salt Stress.Biol.Sci.,4(1):26-33.
  35. Tejera, N. A., M. Soussi, and C. Lluch. Physiological and nutritional indicators of tolerance to salinity in chickpea plants growing under symbiotic conditions. Environ. Exp. Bot., 58: 17-24.
  36. Turan, M. and Y. Sezen. 2002. Effect of salt stress on on plant nutrition uptake. Univrsity of atatturk, Turkey.
  37. Vincent, J. M. 1970. A Manual for the Practical Study of Root Nodule Bacteria. IBP Handbook no. 15. Oxford: Blackwell Scientific Publications.
  38. Zahran, H. H., 1992. Conditions for successful Rhizobium legume symbiosis in saline environments. Biol. Fert. Soils, 12: pp. 73-80.