تأثیر مدیریت تلفیقی حاصلخیزی خاک بر برخی صفات کمی و کیفی و توازن تغذیه‌ای انگور سفید بی‌دانه

نوع مقاله : مقاله پژوهشی

نویسندگان

1 دانشیار پژوهش، بخش تحقیقات خاک و آب، مرکز تحقیقات و آموزش کشاورزی و منابع طبیعی آذربایجان غربی، سازمان تحقیقات، آموزش و ترویج کشاورزی، ارومیه، ایران

2 استادیار پژوهش، بخش تحقیقات خاک و آب، مرکز تحقیقات و آموزش کشاورزی و منابع طبیعی آذربایجان شرقی، سازمان تحقیقات، آموزش و ترویج کشاورزی، تبریز، ایران

3 استادیار، بخش تحقیقات خاک و آب، مرکز تحقیقات و آموزش کشاورزی و منابع طبیعی آذربایجان غربی، سازمان تحقیقات، آموزش و ترویج کشاورزی، ارومیه، ایران

چکیده

برای ارزیابی تأثیر مدیریت تلفیقی حاصلخیزی خاک[1] بر رشد و توازن تغذیه­ای  انگور سفید بی‌دانه (Vitis vinifera L.)، آزمایشی در قالب طرح بلوک‌های کامل تصادفی با چهار  تیمـار در پنج منطقه شهرستان ارومیه، در سال‌­های 1399 و 1400 اجرا شد. تیمارهای آزمایشی شامل (1) شاهد (عدم مصرف کود)، (2) عرف باغدار، (3) مصرف بهینه عناصر معدنی (80-30 گرم اوره، 100-80 گرم سولفات پتاسیم و 50 گرم سولفات روی به ازای هر درختچه انگور بسته به مکان) و  (4) مدیریت تلفیقی حاصلخیزی خاک (200 میلی­لیتر مایه تلقیح زیستی نیتروژن، 300 گرم مایه تلقیح قارچ­های میکوریزی، 100-80 گرم سولفات پتاسیم، 35-15 گرم سولفات روی و 500 گرم کود حیوانی به ازای هر درختچه انگور بسته به مکان) بودند. نتایج نشان داد که بین مکان­های اجرای تحقیق اختلافی ازنظر صفات عملکرد میوه، شاخص کلروفیل، اسیدیته قابل تیتراسیون و تجمع غلظت مواد جامد محلول میوه وجود نداشت ولی، تفاوت معنی­داری بین غلظت عناصر پرمصرف و کم‌مصرف، به­جز عنصر آهن، مشاهده شد. عملکرد میوه انگور در تمامی تیمارها نسبت به شاهد افزایش یافت (p≤0.05) و مقدار افزایش آن در تیمارهای 3 و 4 نسبت به تیمار 2 به ترتیب معادل 27/2 و 04/4 کیلوگرم بر تاک بود. شاخص کلروفیل برگ در تیمار 4 به ترتیب به میزان 99/10% و 69/9% نسبت به تیمارهای 2 و 3 افزایش یافت. اسیدیته قابل تیتراسیون میوه در تیمار 4 کاهش معنی‌داری نسبت به تیمار 1 به میزان 09/16% نشان داد (p≤0.05). بالاترین تجمع درصد مواد جامد محلول میوه نیز در تیمار 4 مشاهده شد (p≤0.05). تفاوت معنی‌داری بین دو تیمار 3 و 4 ازنظر این دو صفت کیفی وجود نداشت. استفاده از اعداد مرجع تشخیص چندگانه در تیمارهای شاهد نشان داد که به‌طور متوسط، ترتیب نیاز غذائی تاک‌ها به‌صورت K=Ca>Mg>N>P و  Fe>Zn>Mn>Cu>B بود. کمترین شاخص توازن تغذیه­ای به میزان 02/9 در تیمار مدیریت تلفیقی حاصلخیزی خاک و بیشترین مقدار در تیمار شاهد معادل 02/35 به دست آمد. به‌طورکلی، با توجه به افزایش قابل‌توجه صفات کمی و کیفی محصول انگور با مدیریت تلفیقی حاصلخیزی خاک، این فن­آوری مؤثرترین راهکار برای مدیریت بهینه کود دهی و تولید بهینه محصول در تاکستان­ها محسوب می­گردد.
 
[1]. Integrated Soil Fertility Management (ISFM)

کلیدواژه‌ها


عنوان مقاله [English]

Effect of Integrated Soil Fertility Management on Some Quantitative and Qualitative Characteristics and Nutritional Balance of Thompson Seedless Grape

نویسندگان [English]

  • Aziz Majidi 1
  • Rahim Motalebifard 2
  • Hossien Azizi 3
1 Associate Professor, Soil and Water Research Dept., West Azerbaijan Agricultural and Natural Resources Research and Education Center, Agricultural Research, Education and Extension Organization, Urmia, Iran
2 Assistant Professor, Soil and Water Research Dept., East Azerbaijan Agricultural and Natural Resources Research and Education Center, Agricultural Research, Education and Extension Organization, Tabriz, Iran
3 Assistant Professor, Soil and Water Research Dept., West Azerbaijan Agricultural and Natural Resources Research and Education Center, Agricultural Research, Education and Extension Organization, Urmia, Iran
چکیده [English]

To evaluate the effect of integrated soil fertility management (ISFM) on growth and nutritional balance of Thompson Seedless grape (Vitis vinifera L.), an experiment was conducted in a randomized complete block design including four treatments with three replications at Urmia, Iran, during 2020 and 2021seasons. Treatments included T1= check (no fertilization), T2= farmers’ conventional fertilization, T3=optimum fertilization of mineral nutrients (30-80 g Urea, 80-100 g potassium sulfate and 50 g zinc sulfate/vine depending on the location) and T4= ISFM (200 ml N fixer bacteria inoculant, 300 g mycorrhizal fungal, 80-100 g potassium sulfate, 15-35 g zinc sulfate, 500 g manure/vine, depending on the location). Results indicated no significant difference among the study sites in terms of cluster weight, chlorophyll index, titratable acidity (TA) and total soluble solids (TSS) of fruits, but a significant difference was observed between macro- and micronutrients, except for iron (Fe). The cluster weight was increased in all fertilized treatments compared to the check (p≤0.05). Grapes increase in T3 and T4 compared to T2 was 2.27 and 4.04 kg/vine, respectively. The leaf chlorophyll index increased in T4 by 10.99% and 9.69%, respectively, compared to T2 and T3. TA showed a significant decrease in T4 compared to T1 by 16.09% (p≤0.05). However, TSS accumulation showed the highest value in the T4 (p≤0.05). There was no significant difference between T3 and T4 in terms of these two qualitative characteristics. Evaluation of nutritional status using compositional nutrient diagnosis (CND (norms in control treatments indicated that, on average, the order of nutritional requirements of macro- and micronutrients were K=Ca>Mg>N>P and Fe>Zn>Mn>Cu>B, respectively. The lowest nutrient balance index (9.02) was obtained in the T4 and the highest value was observed in T1 treatment (35.02). In general, it is concluded that due to the significant increase in quantitative and qualitative factors of grape yield with ISFM, this technology was the best for balanced fertilization program and optimum fruit production in vineyards.
 

کلیدواژه‌ها [English]

  • Vitis vinifera L
  • Grape yield
  • Grape quality
  • Optimum fertilization
  • Soil health
  1. احمدی، ک.، عباد زاده، ح. حاتمی، ف. حسین پور، ر. و ه. عبد شاه. 1399. آمارنامه کشاورزی سال 1398: محصولات باغبانی. معاونت برنامه‌ریزی و اقتصادی، مرکز فناوری اطلاعات و ارتباطات، وزارت جهاد کشاورزی. تهران، ایران.
  2. امامی، ع. 1375. روش‌های تجزیه گیاه. جلد اول، موسسه تحقیقات خاک و آب، سازمان تحقیقات، آموزش و ترویج کشاورزی، نشریه شماره 982. کرج، ایران.
  3. داودی، م. ح.، ک. شهبازی، م. فیض اله زاده اردبیلی و ح. رضایی. 1394. روش­های تجزیه کودهای آلی. چاپ اول، موسسه تحقیقات خاک و آب، کرج، ایران.
  4. شهابیان، م.، ملکوتی، م. ج و ع. طلایی. 1367. تعیین اثرات برخی عناصر غذایی اصلی و ریزمغذی‌ها در بهبود کیفی و کمی انگور در قزوین. پایان‌نامه کارشناسی ارشد، دانشگاه تربیت مدرس، تهران، ایران.
  5. علی احیائی، م. 1376. شرح روش‌های تجزیه شیمیائی خاک. جلد دوم، موسسه تحقیقات خاک و آب، نشریه شماره 1024. تهران، ایران.
  6. مجیدی، ع.، و ح. دولتی بانه. 1398. تأثیر کودهای آلی، زیستی و شیمیایی نیتروژن بر برخی ویژگی‌های کمی و کیفی انگور سفید بی‌دانه. مجله علوم باغبانی ایران. 50 (4): 957-947.
  7. مجیدی، ع و م. ج. ملکوتی. 1386. بررسی مسمومیت بور (B) در باغ‌های میوه حاشیه دریاچه ارومیه. نشریه فنی شماره 002، انتشارات سنا، گروه خاکشناسی، دانشکده کشاورزی، دانشگاه تربیت مدرس، تهران، ایران.
  8. مطلبی فرد، ر.، مجیدی، ع. و طاهری،م. 1400. شناخت وضعیت تغذیه­ای باغات انگور. گزارش نهائی، موسسه تحقیقات خاک و آب، سازمان تحقیقات، آموزش و ترویج کشاورزی، تهران، ایران.
  9. Agaev, N. 1984. Effect of microelements on grapevine yield and quality. Sadovodstvo, Vinogradarstvo İ Vinodelie Moldavii. 8: 41-42.
  10. Amiri, M. E., and E. Fallahi. 2007. Influence of mineral nutrients on growth, yield, berry quality, and petiole mineral nutrient concentrations of table grape. J. Plant Nutri. 30: 463-470.
  11. Calleja-Cervantes, M. E., Menéndez, S., Fernández-González, A. J., Irigoyen, I., Cibriain-Sabalza, J., Toro, N., Aparicio-Tejo, P. M., and M. Fernández-López. 2015. Changes in soil nutrient content and bacterial community after 12 years of organic amendment application to a vineyard. Euro. J. Soil Sci. 66: 802-812.
  12. Eman, A., El-Monem, A., Saleh, M., and E. Mostafa. 2008. Minimizing the quantity of mineral nitrogen fertilizers on grapevine by using humic acid, organic and biofertilizers. Res. J. Agri. Bio. Sci. 4: 46-50.
  13. Gadisa, N. 2020. Integrated nutrient management for enhancing and sustaining soil fertility and crop productivity in Ethiopia. J. Nat. Sci. Res. 11: 9-20.
  14. Gaiotti, F., Marcuzzo, P., Belfiore, N., Lovat, L., Fornasier, F., and D.Tomasi. 2017. Influence of compost addition on soil properties, root growth and vine performances of Vitis vinifera cv Cabernet sauvignon. Sci. Hortic. 225: 88-95.
  15. Ganeshamurthy, A., Kalaivanan, D., Selvakumar, G., and P. Panneerselvam. 2015. Nutrient management in horticultural crops. Indian J. Fert. 11: 30-42.
  16. Hazelton, P., and B. Murphy. 2007. Interpreting Soil Test Results [OP]: What Do All the Numbers Mean? . 2nd CSIRO Publishing, Australia.
  17. Holland, T. C., Hart, M. M., Bogdanoff, C., and P. Bowen. 2018. Response of Grapevine Rootstocks to Soil Inocula from Different Sources. Am. J. Enol. Vitic. 69: 94-100.
  18. Horneck, D. A., Sullivan, D. M., Owen, J. S., and J. M. Hart. 2011. Soil Test Interpretation Guide. Oregon State University, Extension Service. Available at: file:///C:/Users/ AZMAJ_~1/AppData/Local/Temp/ec1478.pdf.
  19. Jones Jr, J. B.1985. Soil testing and plant analysis: guides to the fertilization of horticultural crops. Hortic. Rev. 7: 1–68.
  20. Krishna, H., Singh, S., Sharma, R., Khawale, R., Grover, M., and V. Patel. 2005. Biochemical changes in micropropagated grape (Vitis vinifera) plantlets due to arbuscular-mycorrhizal fungi (AMF) inoculation during ex vitro acclimatization. Sci. Hortic. 106: 554-567.
  21. Kumar, P. S., Geetha, S. A., Savithri, P., Mahendran, P., and K. Ragunath. 2003. Evaluation of DRIS and CND indexes for effective nutrient management in Muscat grapevines (Vitis vinefera). J. Applied Hortic. 5: 76-80.
  22. López-García, Á., Jurado-Rivera, J. A., Bota, J., Cifre, J., and Baraza. 2020. Space and Vine Cultivar Interact to Determine the Arbuscular Mycorrhizal Fungal Community Composition. J. Fungi. 6: 317.
  23. Lu, S., Yan, Z., Chen, Q., and F. Zhang. 2012. Evaluation of conventional nitrogen and phoshorus fertilization and potential environmental risk in intensive orchards of north China. J. . Plant Nutr. 35: 1509-1525.
  24. Majidi, A., Rahnemaie, R., Hassani, A., and M.J. Malakouti. 2010. Adsorption and desorption processes of boron in calcareous soils. Chemosphere 80: 733-739.
  25. Mostofi, Y., and F. Najafi. 2005. Analytical laboratory methods in horticulture. Tehran University Press, Tehran, Iran. (In Farsi)
  26. Ortega-Blu, R., Martinez, M., and P. A. Ospina. 2016. Effects of the integrated nutrient management on soil properties in table grape ‘Crimson Seedless’ during establishment. Acta Hortic. 1146: 121-128.
  27. Ozdemir, G., Akpinar, C., Sabir, A., Bilir, H., Tangolar, S., and I. Ortas. 2010. Effect of inoculation with mycorrhizal fungi on growth and nutrient uptake of grapevine genotypes (Vitis spp.). Eur. J. Hortic. Sci. 75: 103-110.
  28. Parent, L.E., and M. Dafir. 1992. A theoretical concept of compositional nutrient diagnosis. J. Am. Soc. Hort. Sci. 117: 239-242.
  29. Patil, D. R., Sulikeri, G. S., Patil, H. B., and R. A. Balikai. 2008. Studies on the integrated nutrient managment in Thompson Seedless grapes. pp. 383-388. International Society for Horticultural Science (ISHS), Leuven, Belgium.
  30. Roy, R.N. 1995. FAO soil fertility and integrated plant nutrition management programmes. International Atomic Energy Agency (IAEA): IAEA.
  31. Sharma, K., Srivastava, P., Srivastava, P., and Singh, V. 2006. Effect of farmyard manure application on boron adsorption–desorption characteristics of some soils. Chemosphere 65: 769-777.
  32. Shireen, F., Nawaz, M. A., Chen, C., Zhang, Q., Zheng, Z., Sohail, H., Sun, J., Cao, H., Huang, Y., and Z. Bie. 2018. Boron: functions and approaches to enhance its availability in plants for sustainable agriculture. Int. J. Mol. Sci. 19: 1856-1876.
  33. Soil Survey Staff. Keys to Soil Taxonomy . 12 th Ed. USDA-Natural Resources Conservation Service, Washington, DC.
  34. Srivastava, A., Wu, Q.-S., Mousavi, S. M., and D. Hota. 2021. Integrated Soil Fertility Management in Fruit Crops: An Overview. Int. J. Fruit Sci. 21: 413-439.
  35. Velásquez, A., Vega-Celedón, P., Fiaschi, G., Agnolucci, M., Avio, L., Giovannetti, M., D’Onofrio, C., and M. Seeger. 2020. Responses of Vitis vinifera Cabernet Sauvignon roots to the arbuscular mycorrhizal fungus Funneliformis mosseae and the plant growth-promoting rhizobacterium Ensifer meliloti include changes in volatile organic compounds. Mycorrhiza. 30: 161-170.
  36. Wheeler, S., and Pickering, G. 2003. Optimizing grape quality through soil management practices. J. Food Agric. Environ. 1: 190-197.
  37. Wilson, S. G., Lambert, J.-J., and R. Dahlgren. 2021. Compost Application to Degraded Vineyard Soils: Effect on Soil Chemistry, Fertility, and Vine Performance. Am. J. Enol. Vitic. 72: 85-93.
  38. Wu, W., and Ma, B. 2015. Integrated nutrient management (INM) for sustaining crop productivity and reducing environmental impact: A review. Sci. Total Environ. 512: 415-427.
  39. Zhang, H., Lal, R., Zhao, X., Xue, J.-F., and F. Chen. 2014. Opportunities and Challenges of Soil Carbon Sequestration by Conservation Agriculture in China. Adv. Agron. 124: 1-36.