بررسی ویژگی‌های رویشی، فیزیولوژی و زردبرگی نارنگی انشو با پایه کاریزوسیترنج در برخی خاک‌های آهکی مازندران

نوع مقاله : مقاله پژوهشی

نویسندگان

1 استادیار بخش تحقیقات خاک و آب، مرکز تحقیقات و آموزش کشاورزی و منابع طبیعی مازندران؛ سازمان تحقیقات، آموزش و ترویج کشاورزی، ساری، ایران

2 استادیار بخش علوم زراعی و باغی، مرکز تحقیقات و آموزش کشاورزی و منابع طبیعی مازندران؛ سازمان تحقیقات، آموزش و ترویج کشاورزی، ساری، ایران

10.22092/ijsr.2022.126890

چکیده

در استان مازندران، استفاده از سیترنج­ها از جمله کاریزوسیترنج به عنوان پایه جایگزین برای مرکبات درحال توسعه و ترویج است. با درنظر گرفتن دامنه تغییرات زیاد آهک و بافت در خاک‌های منطقه، بررسی واکنش این پایه‌ به شرایط خاک‌های منطقه بسیار ضروری است. هدف پژوهش حاضر ارزیابی روند رشد، و تحمل پایه کاریزوسیترنج به خاک‌های آهکی شرق مازندران بود. به این منظور، آزمایشی به مدت دو سال:کدام سال ها؟ درقالب طرح بلوک‌های کامل تصادفی در هفت خاک با بافت متفاوت از لوم شنی تا رسی و دامنه کربنات کلسیم معادل از 2% تا 45% انجام شد. اندازه­گیری ها شامل روند رشد رویشی، وزن خشک، شاخص‌ درجه زردی، شاخص فلورسنس، کلروفیل، غلظت عناصر غذایی در برگ و ریشه بود. نتایج نشان داد که بیشترین میانگین وزن خشک اندام هوایی از خاک­های با بافت لوم و آهک کل 2% و همچنین خاک­های با بافت شن لومی و آهک کل 40% حاصل شد. بیشترین درجه زردی برگ از خاک‌­های با بافت لوم، آهک 45% و آهک فعال 16% به دست آمد و کمترین درجه زردی از خاک‌های با آهک کل 2% و بدون آهک فعال حاصل شد. میانگین غلظت آهن کل در ریشه‌ها، 94/8 برابر میانگین غلظت آن در برگ‌ها بود که تجمع و رسوب آهن در ریشه‌ها را نشان می‌دهد. مقدار منگنز قابل استفاده برای درختان مرکبات در بیشتر خاک‌ها بیش از حد مطلوب بود اما میانگین غلظت منگنز برگ در بیشتر خاک‌ها کمتر از حد کفایت  بود که نشان می­داد کمبود منگنز در برگ درختان مرکبات به علت کمبود منگنز در خاک نبود بلکه ناشی از  انتقال منگنز از ریشه به اندام هوایی بود. به طور کلی، میانگین غلظت منگنز در ریشه، 67/6 برابر میانگین غلظت آن در برگ بود. براساس نتایج، منگنز محدود کننده‌ترین عنصر برای این پایه و پیوندک بود در حالی که تجمع آهن در ریشه بیشتر از منگنز بود. نتایج میانگین مقدار کلروفیل و شاخص فلورسنس کلروفیل (Fv/Fm) برگ­ها نشان داد که خاک­های با بافت متوسط و آهک کل کم و همچنین خاک­های با بافت سبک و آهک کل زیاد، بیشترین مقدار کلروفیل و شاخص فلورسنس را داشتند. بر پایه نتایج، این پایه در خاک­های با آهک کل بیشتر از 14% علائم زرد برگی و کاهش رشد داشت. نیز، بافت خاک و مقدار آهک در تحمل پایه کاریزوسیترنج به خاک‌های آهکی بیشترین تاثیر را نشان داد به طوری که در خاک­های با بافت سنگین و متوسط و آهک کل بیشتز از 14% علائم شدید زرد برگی و کاهش رشد نشان می‌داد اما در خاک­های با بافت سبک و آهک کل 40%، علایم کلروز ظاهر نشد یا بسیار خفیف بود. بنابراین به باغداران توصیه می­شود در انتخاب این پایه، بافت خاک و مقدار آهک خاک را لحاظ نمایند.

کلیدواژه‌ها


عنوان مقاله [English]

Evaluation of Vegetative, Physiological, and Chlorosis Characteristics of Satsuma Mandarin on Carrizo Citrange Rootstock in Some Calcareous Soils

نویسندگان [English]

  • ali asadi kangarshahi 1
  • negin akhlaghi amiri 2
1 Assistant Professor, Soil and Water Research Department, Mazandaran Agricultural and Natural Resources Research and Education Center, AREEO, Sari, Iran
2 Assistant Professor, Agronomy and Horticultural Science Department, Mazandaran Agricultural and Natural Resources Research and Education Center, AREEO, Sari, Iran
چکیده [English]

In Mazandaran Province, use of Carrizo citrange (Citrus sinensis Osb. × Poncirus trifoliata L. Raf.) as an alternative rootstock for citrus is expanding. Also, due to great changes in lime content  of the soils (0- 45%) and soil texture, it is necessary to study the response of this rootstock to the soils conditions. Therefore, the present study aimed to evaluate the growth trend and tolerance of this rootstock to calcareous soils of East Mazandaran. To this end, an experiment was conducted for two years in a randomized complete block design in seven soils with different textures (sandy to clay loam) and calcium carbonate content (2- 45%). Measurements included vegetative growth trend, dry weight, chlorosis rate, fluorescence index (Fv/Fm), and nutrient concentration in leaves and roots. The results showed that the highest dry weight of aerial parts was obtained from soils with loam texture and total lime of 2% and soils with loamy sand texture and total lime of 40%. The highest chlorosis rate was obtained from soils with loam texture and 45% lime with 16% active lime and the lowest chlorosis rate was obtained from active- lime-free soils and 2% total lime. The average of Fe concentration in the roots was about 8.94 times the average concentration in the leaves, indicating accumulation and deposition of iron in the roots. In most soils, the amount of manganese available for citrus trees was excessive, but the mean concentration of leaf was less than adequate. The overall mean Mn concentration in the roots was about 6.67 times more than its mean concentration in leaf. The most limiting element for Carrizo citrange rootstock and scion was Mn and its low transfer efficiency from root to leaf. The results of mean chlorophyll content and chlorophyll fluorescence index (Fv / Fm) of leaves showed that soils with loam texture and low total lime and soils with light texture and high total lime had the highest amount of chlorophyll and fluorescence index. According to the results, soil texture influenced tolerance of Carrizo citrange rootstock in calcareous soils and, in relatively medium and heavy texture soils, the use of this rootstock in soils with total lime less than 14% is recommended, but in light-textured soils, its use in soils with total lime about 40% is also recommended. Therefore, in choosing this rootstock, it is recommended to consider soil texture and lime content.
 

کلیدواژه‌ها [English]

  • Active iron
  • Chlorosis
  • Citrus
  • Fluorescence
  • Vegetative growth
  1. اخلاقی امیری، ن. 1399. هرس درختان مرکبات. انتشارات آموزش و ترویج کشاورزی. تهران، ایران.
  2. اسدی کنگرشاهی، ع. 1398. مدیریت کوددهی درختان بارده مرکبات. انتشارات آموزش و ترویج کشاورزی. تهران، ایران.
  3. اسدی کنگرشاهی، ع. 1398. بررسی وضعیت مدیریت منگنز متناسب با مراحل رشد و تأثیر آن بر عملکرد و کیفیت مرکبات شرق مازندران. مجله پژوهش‌های خاک، جلد 9 شماره 5، موسسه تحقیقات خاک و آب. کرج. ایران.
  4. اسدی کنگرشاهی، ع. 1397. روند رشد، واکنش تغذیه‌ای و تحمل ترویرسیترنج به خاک‌های آهکی. نشریه علمی ترویجی مدیریت اراضی، جلد 9 شماره 2، موسسه تحقیقات خاک و آب. کرج. ایران.
  5. اسدی کنگرشاهی، ع. و ن اخلاقی امیری. 1399. بررسی مقدار رشد و ویژگی‌های رویشی و فیزیولوژیکی نارنگی انشو با پایه سی-35 در چند خاک آهکی . مجله پژوهش‌های خاک، جلد 32، شماره 2، موسسه تحقیقات خاک و آب. کرج. ایران.
  6. اسدی کنگرشاهی، ع. و ن. اخلاقی امیری. 1397. مدیریت احداث باغ پایدار مرکبات. انتشارات آموزش و ترویج کشاورزی. تهران، ایران.
  7. اسدی کنگرشاهی، ع.، ن. اخلاقی امیری و علیرضا فلاح. 1397. راهنمای نمونه­برداری و تفسیر نتایج تجزیه خاک و برگ برای درختان مرکبات. نشریه فنی 561، موسسه تحقیقات خاک و آب، کرج، ایران.
  8. اسدی کنگرشاهی، ع. و ن. اخلاقی امیری. 1394. بررسی شاخص درجه زردی پایه‌های مختلف مرکبات در خاک‌های آهکی شرق مازندران. چهاردهمین کنگره علوم خاک ایران. دانشگاه ولی‌عصر رفسنجان، کرمان، ایران.
  9. اسدی کنگرشاهی، ع. و ن. اخلاقی امیری. 1393. تغذیه پیشرفته و کاربردی مرکبات. جلد اول، انتشارات آموزش و ترویج کشاورزی. تهران، ایران.
  10. اسدی کنگرشاهی، ع.، غ.ر. ثواقبی، م. سمر و م. فرحبخش. 1392. امکان استفاده از فلورسنس کلروفیل برای ارزیابی تحمل تعدادی از پایه­های مرکبات به تنش ماتداب. مجله به زراعی کشاورزی، جلد 15، شماره 4، دانشگاه تهران، تهران، ایران.
  11. اسدی کنگرشاهی، ع.، ن. اخلاقی امیری و م. ج. ملکوتی. 1390. تأثیر مصرف چهار ساله روی بر عملکرد و کیفیت پرتقال سانگین. مجله علوم خاک و آب. جلد 42، شماره 1، دانشگاه تهران، تهران، ایران.
  12. اسدی کنگرشاهی، ع. و م. محمودی. 1379. ضرورت مصرف عناصر روی و منگنز در باغ‌های مرکبات شرق مازندران. مجله علمی پژوهش خاک و آب (ویژه نامه باغبانی)، موسسه تحقیقات خاک و آب. جلد 12 شماره 8، تهران، ایران.
  13. اسدی کنگرشاهی، ع.، ن. اخلاقی امیری، م. محمودی و م.  جعفر ملکوتی. 1381. شناخت ناهنجاری‌های تغذیه‌ای در مرکبات مازندران (محدودیت‌ها و توصیه‌ها): قسمت دوم ـ عناصر ریزمغذی. نشریه فنی شماره 269. نشر آموزش کشاورزی، سازمان تحقیقات و آموزش کشاورزی، وزارت کشاورزی، کرج، ایران.
  14. اسدی کنگرشاهی، ع.، م.ج. ملکوتی و ع. چراتی. 1385. کالیبراسیون منگنز تحت شرایط مزرعه‌ایی و نقش آن در عملکرد سویا. مجله علوم کشاورزی ایران. جلد 37، شماره 5، دانشگاه تهران، تهران، ایران.
  15. اسدی کنگرشاهی، ع. و م.ج. ملکوتی. 1386. تاثیر مصرف روی در رشد، غلظت و جذب روی توسط سویا. مجله علوم کشاورزی ایران. جلد 38، شماره 2، دانشگاه تهران، تهران، ایران، صفحه 328 –
  16. اسدی کنگرشاهی، ع.، م.ج. ملکوتی و ع. چراتی. 1385. کالیبراسیون روی تحت شرایط مزرعه‌ایی و نقش آن در عملکرد سویا. مجله علوم خاک و آب. جلد 17، شماره 2، موسسه تحقیقات خاک و آب، تهران، ایران.
  17. طهرانی، م.م.، م. پسندیده و م.ح. داودی. 1390. تعیین پراکنش و توصیه عناصر کم مصرف در اراضی تحت کشت آبی استان های گیلان، مازندران، همدان، کرمانشاه، آذربایجان غربی و اصفهان. وزارت جهاد کشاورزی، سازمان تحقیقات، آموزش و ترویج کشاورزی، موسسه تحقیقات خاک و آب. گزارش نهایی طرح تحقیقاتی. نشریه شماره 1618.
  18. Abadia, J. and A. Abadia. 1993. Iron and plant pigments. In: Barton, L.L. & Hemming, B.C., eds. Iron chelation in plants and soil microorganisms. New York, Academic Press, 327-343.
  19. Alcantara, E., I. Montilla, P. Ramirez, P. Garcia-Molina and F.J. Romera. 2012. Evaluation of quince clones for tolerace to iron chlorosis on calcareous soil under field conditions. Scientia Horti. 138: 50 – 54.
  20. Ammari, T. and K. Mengel. 2006. Total soluble Fe in soil solution of chemically different soils. Geoderma.136: 876 – 885.
  21. Arbona, V., M.F. Lopez-Climent, R.M. Perez-Clement and A.Gomez-Cadenas. 2009. Maintenance of a high photosynthetic performance is linked to flooding tolerance in citrus. Environmental and Experimental Botany. 66: 135 – 142.
  22. Basar, H. 2003. Analytical methods for evaluating chlorosis in peach trees. Communication in Soil Science and Plant Analysis. 34: 327-341.
  23. Bashour, I. and A.A. Sayegh. 2007. Methods of Analysis for Soils of Arid and Semi-Arid Regions. Food and Agriculture Organization of the United Nations, Rome. P. 49-53.
  24. Belkhodja, R., F. Morales, A. Abadia, J. Gomes and J. Abadia. 1994. Chlorophyll fluorescence as a possible tool for salinity tolerance screening in Barley (Hordeum vulgare L.). Plant Physiol. 104: 667-673.
  25. Boman, B.J., T.A. Obreza and K.T. Morgan. 2008. Citrus Best Management practices: Fertilizer rate recommendation and precision application in Florida. Proceeding of The 11th International Society of Citriculture. pp. 573 – 578.
  26. Bremmer, J.M. 1996. Total Nitrogen. P.1085-1122. In: D. L. Sparks et al. (eds.) Methods of soil analysis. American Society of Agronomy, Madison, WI.
  27. Bui, E.N., R.H. Loeppert and L.P. Wilding. 1990. Carbonate Phases in calcareous soils of western United States. Soil Sci. Soc. Am. J. 54: 39- 45.
  28. Byrne, D.H., R.E. Rouse and J. Sudahono. 1995. Tolerance to citrus rootstocks to lime-induced iron chlorosis. Subtrop. Plant Science. 47: 7 – 11.
  29. Castle, B. and E. Stover. 2001. Update on use of swingle citromelo rootstock. University of Florida. Institute of Food and Agricultural Sciences.
  30. Castle, W.S. and J. Nunnallee. 2009. Screening citrus rootstocks and related selections in soil and solution culture for tolerance to low-iron stress. HortScience. 44: 638-645.
  31. Castle, W.S., J.W. Grosser, F.G. Gmitter, R.J. Schnell, T. Ayala – Silva, J.H. Crane and K.D. Bowman. 2004. Evaluation of new citrus rootstocks for Tahiti lime production in Southern Florida. Proceeding of the Florida State Horticultural Society. 117: 174 -181.
  32. Castle, W.S., J.C. Baldwin and R.P. Muraro. 2010. Rootstocks and the performance and economic returns of' 'Hamlin' sweet orange trees. HortScience.45: 875-881.
  33. Chen, Y. and P. Barak. 1982. Iron nutrition of plants in calcareous soils. Adv. Agron. 35: 217 – 240.
  34. Fadl, A., M. El-Otmani, M.C. Benismail, A. Abouatallah and E. Jaouhari. 2008. Optimizing irrigation water supply in a young citrus orchard. Proceeding of The 11th International Society of Citriculture. pp. 573 – 578.
  35. Gee, G.W. and J.W. Bauder. 1986. Particle size analysis. P. 383 – 411. In: A. Klute, (ed.) Methods of Soil Analysis. Part1. SSSA, Madison, WI.
  36. Ivanov, R., T. Brumbarova and P. Bauer. 2012. Fitting into the harsh reality: regulation of irondeficiencyresponses in dicotyledonous plants. Molecular Plant. 5: 27–42.
  37. Jones, J.B., B. Wolf and H.A. Mills. 1991. Plant Analysis Handbook: A Practical Sampling, Preparation, Analysis and Interpretation Guide. Macro-Micro Pub. Inc., Athens, GA.
  38. Kitson, R.E. and M.G. Mellon. 1944. Colorimetric determination of P as a molybdovanadate phosphoric acid. Ind. Eng. Chem. Anal. Ed. 16: 379-383.
  39. Larbi, A., A. Abadia, J. Abadia and M. Morales. 2006. Down co-regulation of light absorption, photochemistry and carboxylation in Fe-deficient plants growing in different environment. Photosynth. Res. 89: 113-126.
  40. Lindsay, W.L. and W.A. Norvel. 1978. Development of  a  DTPA  soil  test  for  zinc, iron, manganese  and  Soil Science Society of America Journal. 42: 421-428.
  41. Loeppert, R.H., L.C. Wei and W.R. Ocumpaugh. 1994. Soil factors influencing the mobilization of iron in calcareous soils. In: Manthey, J.A., Crowley, D.A., Luster, D.G. (Eds.), Biochemistry of Metal Micronutrients in the Rhizosphere. Lewis Publishers. Boca Raton. PP. 343 – 360.
  42. Louzada, E.S., H.S. Rio, M. Setamou, J.W. Watson and D.M. Swietlik. 2008. Evaluation of citrus rootstocks for the high pH, calcareous soils of South Texas. Euhytica. 164: 13 – 18.
  43. Martıinez-Cuenca, M.R., A. Quinones, E. Primo-Millo and M.A. Forner-Giner. 2015. Flooding impairs Fe uptake and distribution in citrus due to the strong down-regulation of genes involvedin strategy I responses to Fe deficiency in roots. PLOS ONE 10: e0123644
  44. Martinez-Cuenca, M.R., M.A. Forner-Giner, D.J. Iglesias, E. Primo-Millo and F. Legaz. 2013. StrategyI responses to Fe-deficiency of two Citrus rootstocks differing in their tolerance to ironchlorosis. Scientia Horticulturae 153:56–63.
  45. Martinez-Guenca, M.R., A. Primo-Capella, A. Quinones, A. Bermejo and M.A. Froner-Giner. 2017. Rootstock influence on iron uptake responses in citrus leaves and their regulation under the Fe paradox effect. Peer J. 5:e3553 https://doi.org/10.7717/peerj.3553
  46. Maxwell, K. and G.N. Johnson. 2000. Chlorophyll fluorescence: a practical guide. Journal of Experimental Botany. 51: 659-668.
  47. Mclean, E.O. 1982. Soil pH and lime requirement. P. 199- 224. In: A.L. Page et al. (ed.), Methods of Soil Analysis. Part 2. SSSA. Madison, WI.
  48. Mengel, K. and E. Kirkby. 2001. Principles of plant nutrition. 5th edition, Kluwer Academic Publisher, Dordrecht, The Netherlands.
  49. Mengel, K. 1995. Iron availability in plant tissues-iron chlorosis in calcareous soils, in: J. Abadia (Ed.), Iron Nutrition in Soils and Plant. Kluwer Academic Publishers, Dordrecht, Netherlands. 389-397.
  50. Mishra, A., K.B. Mishra, H. Hoermiller, A.G. Heyer and L. Nedbal. 2011. Chlorophyll fluorescence emission as a reporter on cold tolerance in Arabidopis thaliana accession. Plant Signaling and Behavior. 6: 301-310.
  51. Molassiotis, A., G. Tanoa, G. Diamantidis, A. Patakas and I. Therios. 2006. Effect of 4-month Fe deficiency exposure on Fe reduction mechanism, photosynthetic gas exchange, chlorophyll fluorescence and antioxidant defense in two peach rootstocks differing in Fe deficiency tolerance. J. Plant Physiol. 163: 176-186.
  52. Morales, F., R. Grasa, A. Abadia and J. Abadia. 1998. Iron chlorosis paradox in fruit trees, Journal of Plant Nutrition. 24: 815-825.
  53. Mortvedt, J.J., F.R. Cox, L.M. Shuman and R.M. Welch. 1991. Micronutrients in Agriculture. Soil Science Society of America, Inc. Madison, Wisconsin, USA.
  54. Neaman, A. and L. Aguirre. 2007. Comparison of different methods for diagnosis of iron deficiency in avocado. Journal Plant Nutrition. 30: 1098 – 1108.
  55. Nelson, D.W. and L.E. Sommers. 1982. Total cabon, organic carbon, and organic matter.P. 539 – 579. In: A.L. Page et al. (eds.), Methods of Soil Analysis. Part II. 2th ed. ASA, SSSA, Madison, WI.
  56. Olsen, S.R. and L.E. Sommers. 1982. In: A.L. Page et al., (Ed.), Methods of Soil Analysis. Part 2. Monograph no 9.  (pp. 403-430). Amrican Agronomy, Madison, WI.
  57. Pedros, R., I. Moya, Y. Goulas and S. Jacquemoud. 2008. Chlorophyll fluorescence emission spectrum inside a leaf. Photochemical and Photobiological Sciences 7: 498-502.
  58. Pestana, M., P.J. Correia, M. David, A. Abadia, J. Abadia and A. Varennes. 2011. Response of five citrus rootstocks to iron deficiency. J. Plant Nutr. And Soil Sci. 174: 837 – 846.
  59. Pestana, M., M. David, A. de Varennes, J. Abadia and E. A. Faria. 2001. Responses of Newhall orange trees to iron deficiency in hydroponics: effects on leaf chlorophyll, photosynthetic efficiency and root ferric chelate reductase activity. Jounal of Plant Nutrition. 24: 1609-1620.
  60. Pestana, M., A. de Varrnnes, J. Abadia and E. Araujo Faria. 2005. Differential tolerance to iron deficiency of citrus rootstocks grown in nutrient solution. Scientia Horticulturae. 104: 25 – 36.
  61. Qrtiz, P.R., B.J.C. Meza, F.R. Garza Requena, G.M. Flores and J.D. Etchevers Barra. 2007. Evaluation of different iron compound in chlorotic Italian lemon. Plant Physiology and Biochemistry. 45: 330-334.
  62. Romheld, V. 2000. The chlorosis paradox: Fe inactivation in leaves as a secondary eventin Fe deficiency chlorosis. Journal of Plant Nutrition.23:1629–1643.
  63. Salisbury, F.B. and C.W Ross. 1992. Plant Physiology. Wadsworth Publishing Company, Belmont, California. 682 pp.
  64. Sallato, B., T. DuPont and D. Granatstein. 2018. Tree fruit soil fertility and plant nutrition in cropping orchards in central Washington. WSU Extension.
  65. Schneider, A.1997. Release and fixation of potassium by a loamy soil as affected by initial water content and potassium status of soil samoles.European Journal of Soil Science. 48: 263 – 271.
  66. A., S. Naqvi and S. Singh. 2002. Citrus Germplasm Cultivar and Rootstocks. Natural Research Centre for Citrus, Kalyani publishers. New Delhi, India.
  67. Tagliavini, M. and A.D. Rombola. 2001. Iron deficiency and chlorosis in orchard and vineyard ecosystems. Eur. J. Agron. 15: 71– 92.
  68. Wright, R.J. and T.I. Stuczynski. 1996. Atomic absorption and flame emission spectroscopy. In: Methods of Soil Analysis. Sparks, D.L. (Ed.), Part III, Chemical Methods, SSSA Book Series No.5, SSSA, Madison, WI. P. 65–91.
  69. Yang, L., G. Li, Q. Lin and X. Zhao. 2010. Active carbonate of chestnut soils in different lands. Ecology Environmental Science. 19: 428 – 432.