اثر اسید سیلیسیک و باکتری‌های حل‌کننده فسفات بر فراهمی عناصر کم‌مصرف

نوع مقاله : مقاله پژوهشی

نویسندگان

1 کارشناس بخش تحقیقات شیمی و حاصلخیزی خاک و تغذیه گیاه، موسسه تحقیقات خاک و آب،کرج، ایران

2 استاد گروه علوم و مهندسی خاک دانشکده کشاورزی، دانشگاه تهران، ایران

3 استادیار پژوهش بخش تحقیقات شیمی حاصلخیزی خاک و تغذیه گیاه، موسسه تحقیقات خاک و آب، سازمان تحقیقات آموزش و ترویج کشاورزی، کرج، ایران

4 دانشیار گروه علوم و مهندسی خاک دانشکده کشاورزی، دانشگاه تهران، ایران

چکیده

با توجه به اینکه اغلب خاک­های آهکی ایران دچار کمبود یک یا چند عنصر کم­مصرف می­باشد، تغذیه بهینه عناصرغذایی، نظیر سیلیسیم، تحت تأثیر تیمارهای زیستی، می­تواند اثربخشی بالایی در این شرایط داشته باشد. از این رو، به منظور بررسی اثرات اسید سیلیسیک و باکتری­های حل­کننده فسفات بر فراهمی عناصرغذایی کم­مصرف توسط گندم، این تحقیق در قالب طرح کاملاً تصادفی با دو فاکتور شامل چهار سطح سیلیسیم (صفر، 150، 300، 600) میلی­گرم بر کیلوگرم سیلیسیم از منبع اسید سیلیسیک و سه سطح باکتری (عدم تلقیح باکتری، باسیلوس، و سودوموناس) در سه تکرار در گلخانه مؤسسه تحقیقات خاک و آب اجرا شد. نتایج بدست آمده از این تحقیق نشان داد که کاربرد توأم اسید سیلیسیک و باکتری­های حل­کننده فسفات، موجب افزایش جذب منگنز و آهن نسبت به تیمار شاهد شد، اما اثر ناهمسازی یا غیرهم افزایی بین عناصرغذایی کم­مصرف، موجب کاهش جذب روی در سطوح کاربرد بالاتر اسید سیلیسیک شد. اثر تلقیح باکتری باسیلوس و سودوموناس بر مقدار جذب روی، منگنز و آهن اندام هوایی گندم، نسبت به باکتری شاهد، برتری داشت. از طرفی کاربرد اسید سیلیسیک (600 میلی­گرم سیلیسیم بر کیلوگرم خاک به­همراه باکتری­ سودوموناس)، غلظت فسفر اندام هوایی گندم را تا سطح بهینه، به­طور معنی­داری افزایش داد. از آنجایی که در خاک آهکی ﻣﺼﺮف ﺑﯿﺶ از ﺣﺪ ﮐﻮد ﻓﺴﻔاتی در ﺟﺬب ﻋﻨﺎﺻﺮ ﮐﻢ­ﻣﺼﺮف ﻣﺸﮑل اﯾﺠﺎد ﻣﯽﮐﻨﺪ، لذا کاربرد ترکیبی اسید سیلیسیک و باکتری­های حل­کننده فسفات می­تواند به عنوان یک روش مؤثر در فراهمی عناصر کم­مصرف در خاک مورد مطالعه در شرایط گلخانه­ای توصیه شود.

کلیدواژه‌ها


عنوان مقاله [English]

Effect of Silicic Acid and Phosphate Solubilizing Bacteria on the Availability of Micro Nutrients

نویسندگان [English]

  • Leila Rezakhani 1
  • Babak Motesharezadeh 2
  • Mohammad Mehdi Tehrani 3
  • H. Etesami 4
  • Hossein Mirseyed Hosseini 4
1 Researcher, Department of Soil Fertility and Plant Nutrition, Soil and Water Research Institute, Iran
2 Professor, Department of Soil Science and Engineering, Faculty of Agriculture, University of Tehran, Iran
3 Assistant Professor, Department of Soil Fertility and Plant Nutrition, Soil and Water Research Institute, Iran
4 Associate Professor, Department of Soil Science and Engineering, Faculty of Agriculture, University of Tehran, Iran
چکیده [English]

Considering that most of the calcareous soils of Iran are deficient in one or more micronutrients, optimal nutrition of nutrients such as silicon under the influence of biological treatments can be highly effective in these conditions. Therefore, this study was conducted to investigate the effects of silicon and phosphate-soluble bacteria on the availability of micronutrients for wheat. We used a completely randomized design in three replications and treatments included 0, 150, 300, 600 mg/kg silicon from a source of silicic acid and three levels of bacteria (non-inoculation of bacteria, Bacillus and Pseudomonas). The study was conducted in the greenhouse of Soil and Water Research Institute. The results showed that the combined use of silicon and phosphate-solubilizing bacteria increased the uptake of manganese and iron compared to the control treatment. However, the antagonistic effect between nutrients reduced zinc uptake at higher levels of functional silicon. The effect of inoculation with Bacillus and Pseudomonas on the amount of zinc, manganese and iron uptake by wheat was superior to the control bacterium. On the other hand, application of silicon (600 mg silicon/kg soil with Pseudomonas bacteria) significantly increased the concentration of phosphorus in wheat to the optimum level. Since excessive use of phosphate fertilizer in calcareous soil reduces absorption of micro nutrients, the combined use of silicic acid and phosphate-soluble bacteria can be recommended as an effective method for increasing availability of micro nutrients in greenhouse conditions.

کلیدواژه‌ها [English]

  • Silicon
  • Growth-promoting bacteria
  • Uptake of nutrients
  • Wheat
  • Calcareous soil
  1. اعتمادیان، م.، ا. حسنی.، م. نورزاده حداد، و م. حنیفه ئی. 1396. ﮐﺎرﺑﺮد اﺳﯿﺪﻫﺎی آﻟﯽ و ﻣﻌﺪﻧﯽ ﺑﺮ آزادﺳﺎزی ﻋﻨﺎﺻﺮ ﻏﺬاﯾﯽ در ﺧﺎک­ﻫﺎی آﻫکی. نشریه پژوهش­های حفاظت آب و خاک، 24 (5): 91-73.
  2. رضاخانی، ل.، ب. متشرع زاده.، م. طهرانی.، ح. اعتصامی، و ح. میرسیدحسینی. 1398. اﺛﺮ ﺳﯿﻠﯿﺴﯿﻢ و ﺑﺎﮐﺘﺮی­ﻫﺎی ﺣﻞ­ﮐﻨﻨﺪه ﻓﺴﻔﺎت ﺑﺮ اﻓﺰاﯾﺶ ﮐﺎراﯾﯽ ﻣﺼﺮف ﻓﺴﻔﺮ. شانزدهمین کنگره علوم خاک ایران، زنجان.
  3. رضاخانی، ل.، ب. متشرع زاده.، م. طهرانی.، ح. اعتصامی، و ح. میرسیدحسینی. 1400. بررسی دینامیک شکل­های شیمیایی سیلیسیم در خاک آهکی و اثر آن بر فراهمی فسفر. هفدهمین کنگره علوم خاک ایران و چهارمین همایش ملی مدیریت آب در مزرعه، کرج.
  4. صالح، ج.، ن. نجفی، و ش، اوستان. 1394. تأثیر مصرف سیلیسیم بر رشد، ترکیب شیمیایی و برخی ویژگی­های فیزیولوژیکی برنج (Oryza sativa) در شرایط شور. مجله علوم و فنون کشاورزی و منابع طبیعی،72: 240-229.
  5. کیانی، ز.، ا. عبدل زاده، و ح. ر، صادقی پور. 1393. تحریک رشد، افزایش آهن، پتاسیم و ترکیبات دیواره سلولی با کاربرد سیلیسیم در گیاه برنج تحت شرایط کمبود آهن. نشریه پژوهش­های زراعی ایران، 12(1): 72-65.
  6. مالمیر، ر.، ب. متشرع­زاده، و ل. تبریزی. 1396. تأثیر کاربرد منابع مختلف سیلیسیم بر محتوای عناصرغذایی فسفر، پتاسیم و سیلیسیم گیاه استویا (Stevia rebaudiana Bertoni). پانزدهمین کنگره علوم خاک ایران. شهریور 1396. اصفهان. ایران.
  7. یوسفی، ر.، و م. اثنی عشری. 1396. ﺗﺄﺛﻴﺮ ﻣﻴﮑﺮﻭ ﻭ ﻧﺎﻧﻮﺫﺭﺍﺕ ﺳﻴﻠﻴﺴﻴﻢ ﺑﺮ ﻏﻈﺖ ﻋﻨﺎﺻﺮ ﭘﺮﻣﺼﺮﻑ، ﮐﻢﻣﺼﺮﻑ ﻭ ﻣﻴﺰﺍﻥ ﺳﻴﻠﻴﺴﻴﻢ ﮔﻴﺎﻩ ﺗﻮﺕﻓﺮﻧﮕﻲ ﺩﺭ ﺷﺮﺍﻳﻂ ﮐﺸﺖ ﺑﺪﻭﻥ ﺧﺎﮎ. نشریه علوم و فنون کشت­های گلخانه­ای، 8 (1): 70-57.
  8. Alzoubi, M. M., Gaibore, M. 2012. The effect of phosphate solubilizing bacteria and organic fertilization on availability of syrian rock phosphate and increase of triple superphosphate efficiency. World J. Agric. Sci, 8: 473–478, doi: 10.5829/idosi.wjas. 8.5.1668
  9. Baybordi, A. 2006. Zinc in soils and crop nutrition. Paivar press. Tabriz, Iran. 180 pp. (In Persian).
  10. Bityutskii, N., Pavlovic, J., Yakkonen, K., Maksimović, V., Nikolic, M. 2014. Contrasting effect of silicon on iron, zinc and manganese status and accumulation of meta mobilizing compounds in micronutrient-deficient cucumber. Plant Physiology and Biochemistry. 74: 205-211.
  11. Dutta, S. and Podile, A. R. 2010. Plant growth promoting rhizobacteria (PGPR): the bugs to debug the root zone. Critical Reviews in Microbiology. 36: 232-244.
  12. Elhaissoufi, W., Khourchi, S., Ibnyasser, A., Ghoulam, Ch., Rchiad, Z., Zeroual, Y., Lyamlouli, K., and Bargaz, A. 2020. Phosphate solubilizing rhizobacteria could have a stronger influence on wheat root traits and aboveground physiology than rhizosphere P solubilization. Frontiers in plant science, doi: 10.3389/fpls.2020.00979
  13. El-Leboudi, S., El-Sebaay, A. S., Hassan Abd Elrahman, Sh., Wafaa, M., Saad, H. Y. 2019. Effect of silicon and phosphorus additions and their interactions on wheat plants grown on a clay soil. Asian Soil Research Journal, 2(1): 1-10.
  14. Elrahman, S.H.A., Mostafa, M.A.M., Taha, T.A., Elsharawy, M.A.O., and Eid, M.A. 2012. Effect of different amendments on soil chemical characteristics, grain yield and elemental content of wheat plants grown on salt-affected soil irrigated with low quality water. Annals of Agricultural Sciences. 57: 2. 175-182.
  15. Etesami, H. and Jeong, B. R. 2018. Silicon (Si) review and future prospects on the action mechanisms in alleviating biotic and abiotic stresses in plants. Ecotoxicology and Environmental Safety. 147(Supplement C): 881-896.
  16. Farshidi, M., Abdolzadeh, A., Sadeghipour, H. R. 2012. Silicon nutrition alleviates physiological disorders imposed by salinity in hydroponically grown canola (Brassica napus) plants. Acta Physiologiae Plantarum. 34: 1779-1788.
  17. Fecht-Christoffers, M.M., P. Maier, K. Iwasaki, H.P. Braun and W.J. Horst. 2007. The Role of the leaf apoplast in manganese toxicity and tolerance in cowpea (Vigna unguiculata Walp). PP. 307-321. In: Sattelmache, B. and W.J. Horst (Eds.), The Apoplast of Higher Plants: Compartment of Storage, Transport and Reactions, Springer, The Netherlands.
  18. Gonzalo, M. J., Lucena, J. J., Hernández-Apaolaza, L. 2013. Effect of silicon addition on soybean and cucumber plants grown under iron deficiency. Plant Physiology and Biochemistry. 70: 455-461.
  19. Gottardi, S., Iacuzzo, F., Tomasi, N., Cortella, G., Manzocco, L., Pinton, R., Romheld, V., Mimmoe, T., Scampicchio, M., Costa, L. D., Cesco, S. 2014. Beneficial effects of silicon on hydroponically grown corn salad (Valerianella locusta (L.) Laterr) plants. Plant Physiology and Biochemistry. 56: 14-23.
  20. Greger, M., Landberg, T., Vaculík, M. 2018. Silicon influences soil availability and accumulation of mineral nutrients in various plant species. Plants, 7:41.
  21. Guntzer, F., Keller, C., Meunier, J. D. 2012. Benefits of plant silicon for crops: areview. Agron. Sustain. Dev. 32: 201-213.
  22. Hallmark, C. T., Wilding, L. P., Smeck, N. E. 1982. Silicon. In: Page, A. L., Miller, R. H., Keeney, D. R, editors. Methods of soil analysis. Part 2: Chemical and microbiological properties, Agronomy monograph no. 9. 2nd ed. Madison: The America Society of Agronomy and Soil Science. P. 263-73.
  23. Hoagland, D. R. and Arnon, D. I. 1950. The water-culture method for growing plants without soil. Circ. Calif. Agric. Exp. Station 347.
  24. Kostic, L., Nikolic, N., Bosnic, D., Samardzic, J., Nikolic, M. 2017. Silicon increases phosphorus (P) uptake by wheat under low P acid soil conditions. Plant Soil. 419: 447-455.
  25. Kowalska, J., Tyburski, J., Jakubowska, M., Krzymińska, J. 2021. Effect of different forms of silicon on growth of spring wheat cultivated in organic farming system. Silicon, 13(1): 211–217. https:// doi.org/10.1007/s12633-020-00414-4
  26. Li, Y., Alva, A., Sumner, M. 1999. Response of cotton cultivars to aluminum in solutions with varying silicon concentrations. Journal of Plant Nutrition. 12(7): 881-892.
  27. Lux, A., Luxova, M., Abe, J., Tanimoto, E., Hattori, T., Inanaga, S. 2003. The dynamics of silicon deposition in the sorghum root endodermis. New Phytol. 158: 437-441.
  28. Marschner, H. 1995. Mineral Nutrition of Higher Plants. Academic Press, London.
  29. Miransari, M. 2013. Soil microbes and the availability of soil nutrients. Acta Physiol. Plant. 35: 3075-3084.
  30. Narayanaswamy, C. and Prakash, N. 2009. Calibration and categorization of plant available silicon in rice soils of south India. Journal of Plant Nutrition. 32(8): 1237-1254.
  31. Nascimento, C. W. A., Cunha, P. K. V., Silva, A. J. 2008. Silicon alleviates the toxicity of cadmium and zinc inmaize (Zea mays L.) grown on a contaminated soil. J. Plant Nutr. Soil Sci. 171: 849-853.
  32. Olanrewaju, O. S., Glick, B. R., Babalola, O. O. 2017. Mechanisms of action of plant growth promoting bacteria. World J. Microbiol. Biotechnol. 33: 197.
  33. Pascual, M. B., Echevarria, V., Gonzalo, M. J., Hernández-Apaolaza, L. 2016. Silico addition to soybean (Glycine max L.) plants alleviate zinc deficiency. Plant Physiol. Biochem. 108: 132-138.
  34. Pavlovic, J., Samardzic, J., Maksimovic, V., Timotijevic, G., Stevic, N., Laursen, K. H., Hansen, T. H., Husted, S., Schjoerring, J. K. Liang, Y., Nikolic, M. 2013. Silicon alleviates iron deficiency in cucumber by promoting mobilization of iron in the root apoplast. New Phytol. 198(4): 1096-1107.
  35. Ramos-Solano, B., García, J. A. L., Garcia-Villaraco, A., Algar, E., Garcia-Cristobal, J., Mañero, F. J. G. 2010. Siderophore and chitinase producing isolates from the rhizosphere of Nicotiana glauca Graham enhance growth and induce systemic resistance in Solanum lycopersicum L. Plant Soil. 334: 189-197.
  36. Rayan, J., Estefan, G., Rashid, A. 2007. Soil and plant analysis laboratory manual. ICARDA.
  37. Rezakhani, L., Motesharezadeh, B., Tehrani, M. M., Etesami, H., Mirseyed Hosseini, H. 2019. Phosphate–solubilizing bacteria and silicon synergistically augment phosphorus (P) uptake by wheat (Triticum aestivum) plant fertilized with soluble or insoluble P source. Ecotoxicology and Environmental Safety, 173:504-513. doi:https://doi.org/10.1016/j.ecoenv.2019.02.060
  38. Rezakhani, L., Motesharezadeh, B., Tehrani, M. M., Etesami, H., Mirseyed Hosseini, H. 2020. Effect of Silicon and Phosphate-Solubilizing Bacteria on Improved Phosphorus (P) Uptake Is Not Specific to Insoluble P- Fertilized Sorghum (Sorghum bicolor) Plants. Journal of Plant Growth Regulation, 39 (1): 239-253. doi:10.1007/s00344-019-09978-x
  39. Saberian Ranjbar, S., Motesharezadeh, B., Moshiri, F., Mirseyed Hosseini, H., Alikhani, H. A. 2019. Silicon utilization efficiency of different wheat cultivars in a calcareous soil. Journal of Silicon, doi.org/10.1007/s12633-018-0038-3
  40. Saleh, J., Najafi, N., Oustan., S. h, Ghasemi-Golezani, K., Aliasghrzad, N. (2018). Silicon affects rice growth, superoxide dismutase activity and concentrations of chlorophyll and proline under different levels and sources of soil salinity. Journal of Silicon. doi.org/10.1007/s12633-018-0057-0.
  41. Sharma, S. B., Sayyed, R. Z., Trivedi, M. H., Gobi, T. A. 2013. Phosphate solubilizing microbes: sustainable approach for managing phosphorus deficiency in agricultural soils. SpringerPlus, 2: 587.
  42. Shi, Y., Wang, Y., Flowers, T. J., Gong, H. 2013. Silicon decreases chloride transport in rice (Oryza sativa) in saline conditions. Journal of Plant Physiology. 170(9): 847-853.
  43. Sinclair, S. A. and Krämer, U. 2012. The zinc homeostasis network of land plants. Biochim. Et. Biophys. Acta (BBA) Mol. Cell Res. 1823: 1553-1567.
  44. Sonobe, K., Hattori, T., An, P., Tsuji, W., Eneji, A. E., Kobayashi, S., Kawamura, Y., Tanaka, K., Inanaga, S. 2011. Effect of Si application on sorghum root responses to water stress. Journal of Plant Nutrition. 34: 71–82.
  45. Tavakkoli, E., Lyons, G., English, P., Guppy, C. N. 2011. Silicon nutrition of rice is affected by soil pH, weathering and silicon fertilisation. Journal of Plant Nutrition. Soil Science. 174: 437-446.
  46. Tian, G. and Kolawole, G. O. 2004. Comparison of various plant residues as phosphate rock amendment on Savanna Soils of West Africa. Journal of Plant Nutrition. 27(4): 571-583.
  47. Waling, I., Van Vark, W., Houba, V., Vanderlee, J. 1989. Soil and plant analysis, a series of syllabi. Part. 7: 250.
  48. You-Qiang, F. U., Hong, S., Dao-Ming, W. U., Kun-Zheng, C. A. I. 2012. Silicon-mediated amelioration of Fe2+ toxicity in rice (Oryza sativa) roots. Pedosphere. 22: 795-802.
  49. Zargar, S. M., Mahajan, R., Bhat, J., Nazir, M and Deshmukh, R. 2019. Role of silicon in plant stress tolerance: opportunities to achieve a sustainable cropping system. Journal of Biotech, 9 (3): 73.