توزیع پذیرفتاری مغناطیسی در ارتباط با ترکیبات آهن در برخی خاک های انتخابی استان فارس

نوع مقاله : مقاله پژوهشی

نویسندگان

1 استادیار دانشکده کشاورزی دانشگاه یاسوج

2 استادیار گروه خاکشناسی دانشگاه کشاورزی رامین، خوزستان

3 عضو هیئت علمی مرکز تحقیقات کشاورزی و منابع طبیعی فارس

4 استادیار دانشکده کشاورزی و منابع طبیعی داراب، دانشگاه شیراز

چکیده

توزیع پذیرفتاری مغناطیسی (χ) و میزان ترکیبات آهن مربوط به 14 نیمرخ خاک در دامنة نسبتاً گسترده ای از شرائط اقلیمی، کاربری و کلاس زهکشی در استان فارس، مورد مطالعه قرار گرفت. پذیرفتاری مغناطیسی در هر دو مبنای خاک خشک شده در آون (χod) و مینروژنیک (χm)، (به منظور جبران مواد دیامگنتیک پویا مانند کربنات ها و گچ) اندازه گیری شد. در اکثر خاک ها، پذیرفتاری مغناطیسی افق های اِلوویال بیشتر از افق های ایلوویال بوده است. این افزایش احتمالاً به آبشوئی مواد دیامگنتیک از افق های سطحی و همچنین تشکیل پدوژنیک فِرّی- مگنتیت ها در سطح خاک مربوط بوده است. خاک های با زهکشی ضعیف و نسبتاً ضعیف دارای پذیرفتاری مغناطیسی به مراتب کمتری نسبت به خاک های با زهکشی مناسب بوده است. رابطة مثبت و معنی داری (P<0.01) میان آهن پدوژنیک متبلور (Fed- Feo) و پذیرفتاری مغناطیسی در خاک ها مشاهده گردید. رابطة مشابهی بین میانگین بارندگی سالانه و پذیرفتاری مغناطیسی خاک ها نیز مشاهده شد.

کلیدواژه‌ها


عنوان مقاله [English]

Distribution of Magnetic Susceptibility in Relation to Iron Compounds in Some Selected Soils of Fars Province

نویسندگان [English]

  • H. R. Owliaie 1
  • E. Adhami 1
  • Siroos Jafari 2
  • M. Rajaie 3
  • R. Ghasemi Fasaei 4
1 Assistant Professor, College of Agriculture, Yasouj University
2 Assistant Professor, University of Agriculture & Natural Resources of Ramin, Khuzestan
3 Scientific Member of Fars Research Center of Agriculture & Natural Resources
4 Assistant Professor of Shiraz University, College of Agriculture & Natural Resources, Darab
چکیده [English]

Distribution of soil magnetic susceptibility (χ) and Fe compounds were studied in 14 soil profiles, reflecting key climatic conditions, land use, and drainage classes in Fars Province. Magnetic susceptibility was measured both on oven-dry basis (χod) and minerogenic basis (compensating for mobile diamagnetic materials such as carbonates and gypsum, χm). Magnetic susceptibility of eluvial horizons was greater than that of the illuvial horizons in most of the soils. This is probably a result of eluviation of diamagnetic materials as well as pedogenic formation of ferrimagnetic minerals in soil surface. Poorly and somewhat poorly drained soils had distinctly lower χm than well-drained soils. There was a positive significant correlation (P<0.01) between crystalline pedogenic Fe (Fed-Feo) and χm. Similar relationship was noticed between mean annual rainfall and χm.

کلیدواژه‌ها [English]

  • Magnetic susceptibility
  • iron compounds
  • calcareous soils
  • drainage class
  • rainfall
  1. اولیائی، حمیدرضا، ابطحی، علی و هک، ریچارد، ج. 1384. نقش فرایندهای پدوژنیکی در توزیع قابلیت مغناطیسی خاک های استان کهگیلویه و بویر احمد. خلاصه مقالات نهمین کنگره علوم خاک ایران. دانشگاه تهران. ص 347-348.
  2. بنائی، محمد حسن. 1378. نقشة رژیم های رطوبتی و حرارتی خاک های ایران. مؤسسه تحقیقات خاک و آب، وزارت جهاد کشاورزی، ایران.
  3. Blume, H.P., and U. Schwertmann. 1969. Genetic evaluation of profile distribution of Al, Fe and Mn oxides. Soil Sci. Soc. Am. Proc. 33: 438-444.
  4. Chapman, H.D. 1965. Cation exchange capacity. p. 891-901. In: A. Black (ed.), Methods of soil analysis, part 2. American Society of Agronomy, Madison, WI.
  5. Day, P.R. 1965. Particle fractionation and particle-size analysis. In: p. 545-567.C.A. Black (ed.), Methods of Soil Analysis, part 1. American Society of Agronomy, Madison, WI.
  6. Dearing, J.A., K.L. Hay, S.M.J. Balsan, A.S. Huddleston, E.M.H. Wellington, and P.J. Loveland. 1996. Magnetic susceptibility of soil: An evaluation of contributing theories using a national data set. Geophys. J. Intern. 127: 728-734.
  7. De Jong, E., D.J. Pennock, and P.A. Nestor. 2000. Magnetic susceptibility of soils in different slope positions in Saskatchewan, Canada. Catena, 40: 291-305.
  8. Feng, Z.D., and W.C. Johnson. Factors affecting the magnetic susceptibility of a loess-soil sequence, Barton County, Kansas, USA.  Catena, 24: 25-37.
  9. Fine, P., M.J. Singer, and K.L. Verosub. 1992. The use of magnetic susceptibility measurements in assessing soil uniformity in chronosequence studies. Soil Sci. Soc. Am. J. 56: 1195-1199.
  10. Grimley, D.A., N.K. Arruda, and M.W. Bramstedt. 2004. Using magnetic susceptibility to facilitate more rapid, reproducible and precise delineation of hydric soils in the Midwestern USA. Catena, 58: 183-213.
  11. Holmgren, G.G.S. 1976. A rapid citrate-dithionate extractable iron procedure. Soil Sci. Soc. Am. Proc. 31: 210-211.
  12. Jackson, M.L. 1975. Soil chemical analysis-advanced course. of Wisconsin, College of Agric., Dept. of Soil Sci., Madison, WI.
  13. Maher, B.A. 1998. Magnetic properties of modern soils and Quaternary loessic Paleosols: Paleoclimatic implications. Palaeogeography, Palaeoclimatology, Palaeoecology. 137: 25-54.
  14. Maher, B.A. 1986. Characterization of soils by mineral magnetic measurements. Phys. Earth Planet. Inter.42: 76-92.
  15. McKeague, J.A., and J.H. Day. 1966. Dithionite-and oxalate-extractable Fe and Al as aids in differentiating various classes of soils. J. Soil Sci. 46: 13-22.
  16. Mullins, C.E. 1977. Magnetic susceptibility of the soil and its significance in soil science-A review. Soil Sci. 28: 223-246.
  17. Munch, J.C., and J.C.G. Ottow. Reductive transformation mechanism of ferric oxides in hydromorphic soils." Environ. Biogeochem. Ecol. Bull. (Stockholm), 35: 383-394.
  18. Le Borgne, E. 1955. Susceptibilite magnetique anomale du sol superficial. Annales de Geophysique, 11: 399-419.
  19. Oades, J.M. 1963. The nature and distribution of iron compounds in soils. Soils and Fert. 26: 69-80.
  20. Owliaie, H.R., R.J. Heck, and A. Abtahi. 2006a. The magnetic susceptibility of soils in Kohgilouye, Iran. Canadian J. Soil Science, 86: 97-107.
  21. Owliaie, H.R., R.J., Heck, and A. Abtahi. 2006b. Distribution of magnetic susceptibility in Kohgilouye Boyerahmad soils, southwestern Iran. Proceeding of 18th World Congress of Soil Science. Philadelphia, Pennsylvania. USA.
  22. Richards, A. (ed.). 1954. Diagnosis and improvement of saline and alkali soils. USDA Handb. No. 60. U.S. Gov. Print. Office, Washington, D.C.
  23. Schwertmann, U., and R.M. Taylor. 1989. Iron oxides. P. 379-438. In: Dixon, J.B. and S.B. Weed, (eds.), Minerals in soil environment. Soil Science Society of America, Madison, USA.
  24. Singer, M.J., and P. Fine. 1989. Pedogenic factors affecting magnetic susceptibility of California Soil Sci. Soc. Am. J. 53: 1119-1127.
  25. Soil Survey Staff, 1993. Soil Survey Manual. USDA. Handbook No. 18. Washington, DC.
  26. Soil Survey Staff, 2006. Keys to Soil Taxonomy.  USDA, NRCS. Washington, DC
  27. Sposito, G., L.J. Lund, and A.C. Chang. 1982. Trace metal chemistry in arid-zone field soils amended with sewage sludge: I. Fractionation of Ni, Cu, Zn, Cd, and Pb in solid phases. Soil Sci. Soc. Am. J. 46: 260–264.
  28. Thomasson, A.J., and P. Bullock. 1975. Pedology and hydrology of some surface water gley soils. Soil Sci. 119: 339-348.
  29. Thompson, R., and F. Oldfield. 1986. Environmental Magnetism. Allen and Unwin, London. 227 p.
  30. S. Salinity Laboratory Staff. 1945. Diagnosis and improvement of saline and alkali soils. USDA. Handbook 60, Washington D.C.