جداسازی و بررسی صفات محرک رشد گیاهی(PGP) برخی از سودوموناس های فلورسنت بومی خاکهای ایران

نوع مقاله : مقاله پژوهشی

نویسندگان

1 دانشجوی سابق کارشناسی ارشد گروه خاکشناسی دانشگاه تهران

2 دانشیار گروه خاکشناسی دانشگاه تهران

3 استادیار پژوهش موسسه تحقیقات خاک و آب

چکیده

در این تحقیق به منظور اطلاع از صفات محرک رشد گیاهی سودوموناس‌های فلورسنت بومی خاک‌های ایران، از تعداد 40 خاک ریزوسفری گندم تعداد 25 جدایه سودوموناس فلورسنت جداسازی و صفات محرک رشد گیاهی آنها مورد بررسی قرار گرفت. نتایج این تحقیق نشان داد که کلیه جدایه‌های مورد مطالعه توانایی تولید اکسین را داشتند. متوسط میزان تولید 44/2 و دامنه آن از 3/1 تا 5/4 میکروگرم در میلی‌لیتر متغیر بود. همچنین جدایه‌های مورد مطالعه از توانایی حل‌کنندگی فسفات نامحلول معدنی برخوردار بودند که این توانایی در بین جدایه‌های مختلف متفاوت بود. متوسط میزان انحلال فسفر نامحلول 5/287 و دامنه آن از 9/129 تا 1/386 میکروگرم در میلی‌لیتر متغیر بود. از نظر توانایی جدایه‌ها در استفاده از ACC (1-آمینوسیکوپرویان کربوکسیلات) به عنوان منبع نیتروژن و یا کربنی نیز تفاوت‌های زیادی بین باکتری‌ها وجود داشت بطوری که از کل 25 جدایه فقط تعداد 9 جدایه قادر به استفاده از ACC به عنوان منبع نیتروژن و یا کربن بودند. با وجود توانایی تولید سیدروفور توسط همه جدایه‌ها، میزان این توانایی در سویه‌های مختلف متفاوت بود و در روشCAS-Agar، قطر هاله به کلنی تشکیل شده 74/0 و دامنه آن از 34/0 تا حداکثر 21/1  متغیر بود. توانایی تولید سیدروفور با استفاده از روش CASAD نیز بررسی گردید که از نظر توانایی تولید سیدروفور نتایج قبلی را تأیید کرد ولی میزان تولید آن با یکدیگر تناقض داشت. متوسط میزان سیدروفور تولید شده در این روش 21/0 و دامنه آن از حداقل 072/0 تا حداکثر 459/0 میلی‌مولار د‌فروکسامین مسیلات (Deferoxamine mesylate) متغیر بود. همچنین هیچ کدام از باکتری‌های مورد مطالعه قادر به تولید آنزیم کیتیناز نبودند. از نظر تولید اسید سالیسیلیک نیز فقط 11 جدایه قادر به تولید آن بودند که متوسط آن 48/2 و دامنه آن از صفر تا 91/10 میکروگرم در میلی‌لیتر متغیر بود. نتایج مربوط به بررسی باکتری‌ها از نظر توانایی تولید سیانیدهیدروژن نیز نشان داد که باکتری‌ها توانایی‌های متفاوتی از نظر تولید سیانیدهیدروژن داشتند که در گروه‌های با توانایی خیلی زیاد، زیاد، متوسط و کم طبقه‌بندی شدند.

کلیدواژه‌ها


عنوان مقاله [English]

Isolation and Determination of PGP Characteristics in Some of Indigenous Fluorescent Pseudomonads of Iranian Soils

نویسندگان [English]

  • A. Soltani 1
  • N. Saleh-Rastin 2
  • K. Khavazi 3
  • H. Asadi-Rahmani 3
  • payman abbaszadeh dahaji 1
1 Former Graduate Student, Soil Science Department, Tehran University
2 Associate professor, Tehran University;
3 Assistant Professor, Soil and Water Research Institute
چکیده [English]

In this research, twenty-five isolates of fluorescent pseudomonads were isolated from forty soil samples of wheat rhizosphere and their ability for promoting plant growth were determined. Results of the study revealed that all the isolates were able to produce auxin (ranging from 1.3-4.5 g/ml) with an average of 2.44. The range of inorganic P solubilization was 129.9-386.1 g/ml and the average was 287.5. Nine isolates were capable of utilizing ACC as carbon and or nitrogen sources, whereas all of them produced siderophore on both CAS agar and CASAD plates. The range of siderophore production was 0.072-0.459 mM of deferoxamine mesylate salt with an average of 0.21 none of the isolates were capable of chitinase production. Salicylic acid production by the isolates ranged from 0-10.91 g/ml (average of 2.48). Bacterial ability for production of hydrogen cyanide had a great variation and based on this ability they were qualitatively classified in to very high, high, intermediate and low. Results of this study showed that fluorescent pseudomonads are native to soils of Iran have the potential to be used as plant growth promoters. There is also a need to study their effects on different agricultural crops. 

کلیدواژه‌ها [English]

  • Plant Growth Promoting Rhizobacteria (PGPR)
  • Fluorescent Pseudomonads
  • wheat
  • auxin
  • siderophore and ACC-deaminase
  1. عطایی، نازنین.1384.جداسازی سودوموناس های فلورسنت تولید کننده هورمون اکسین و بررسی تأثیر آنها بر رشد گندم، پایان نامه دانشجویی، دانشگاه الزهراء، دانشکده علوم پایه، 134صفحه.
  2. رسولی صدقیانی، ح.، ک. خاوازی.، ح. رحیمیان.، م. ج. ملکوتی و هـ. اسدی رحمانی. 1384. ارزیابی توان سویه های بومی سودوموناس های فلورسنت ریزوسفر گندم برای تولید سیدروفور. مجله خاک و آب. جلد 20، شماره 1، مؤسسه تحقیقات خاک و آب، تهران، ایران.
  3. Ahmad, F., Ahmad, L. and M. Saghir. 2005. Indol acetic acid production by the indogenous isolate of Azotobacter and Pseudomonas fluorescens in the presence and absence of Tryptophan. Turk. J. Biol. 29: 29-34.
  4. Ajit,S.,Verma, R. and V. Shanmugan. 2006. Extracellular chitinase of fluorescent pseudomonas antifungal to fusarium oxysporum f.sp.dianti causing carnation wilt. Current Microbiology .52:310-316.
  5. Alexander, D. B. and D. A. Zuberer. 1991. Use of Chrome Azurol S reagents to evaluate siderophore production by rhizosphere bacteria. Biol. Fertil. Soils. 12: 39-45.
  6. Amico, E.D., Cavalca, L., and V. Andreoni. 2005. Analysis of rhizobacterial communities in perennial Graminaceae from polluted water meadow soil, and screening of metal-risistant, potentially plant growth-promoting bacteria. FEMS Microbiology Ecology. 52: 153-162
  7. Bagnasco, P., Delafuente, L., Gualtieri, G., Noya, F. and A. Anas. 1998. Fluorescent pseudomonas As biocontrol agent against forage legume root pathogenic fungi. Soil. Biol. Biochem. 30: 1317-1322.
  8. Bakker, P.A.H.M., Ran, L.X., Pieterse, C.M.J. and L.C. Van loon. 2003. Understanding the involvement of rhizobacteria-mediated induction of systemic resistance in biocontrol of plant disease. J. Plant Pathol.25:5-9
  9. Bar-Yosef, B., Rogers, R. D., Wolfram, J. H.and E. Richman. 1999. Pseudomonas cepecia- mediated rock phosphate solubilization in kaolinite and montmorillonite suspensions. Soil Sci. Soc.of America. 63: 1703-1708.
  10. Bashman, Y. and H. Levanony. 1990. Current status of Azospirillum inoculation technology: Azospirillium as a challenge for agriculture. J. Microbiol. 36: 591-608.
  11. Bent, E., Tuzum, S., Chanway, C. P. and S. Enebak. 2001. Alterations in Plant growth and root hormone levels of lodgepole pines inoculated with rhizobacteria. J. Microbiol. 47: 793-800.
  12. Brown, M. E. 1974. Seed and root bacterization. Annu. Rev. Phytopathol. 12: 181-197.
  13. Chet, and J. Inbar. 1994. Biological control of fungal pathogens. Appl. Biochem. Biotechnol. 48: 37-43.
  14. Cunningham, J. E. and C. Kuiack. 1992. Production of citric and oxalic acids and solubilization of calcium phosphate by Penicillium bilaii. Environ. Microbiol. 58: 1451-1458.
  15. Dave, B. P. and H.C. Dube. 2000. Detection and chemical characterization of siderophore of rhizobacterial Fluorescent pseudomonas. Indian Phytopathol. 53: 97-98.
  16. De Meyer, G. and M. Hofte. 1997. Salicylic acid produced by the rhizobacterium Pseudomonas aeruginosa 7NKS2 induces resistance to leaf infection by Botrytis conerea on bean. Phytopathol. 87: 588-593.
  17. Donate-Correa, J., Leon-Barrios, M. and R. Perez-Galdona. 2004. Screening for plant growth-promoting rhizobacteria in Chamaecytisus proligerus, a forage tree-shrub legume endemic to the Canary Island. Plant Soil. 266: 261-272.
  18. Elmerich, C. 1984. Molecular biology and ecology of diazotrophs associated with non-leguminous plants. Biotech. 2: 967-978.
  19. Flashman, M. A., Eyaliz, A., Voisard, C. and D. Hass. 1996. Supperssion of Septuria tritici bloth and leaf of wheat by recombinant cyanid-producing strains of Pseudomonas putida Plant-Microbe. Interact. 9: 642-645.
  20. Glick, B. R. 1995. The enhacement of plant growth by free-living bacteria. J. Microbiol. 41: 109-117.
  21. Glick, B. R., Jacobson, C. B., Schwarze, M. M. K. and J. J. Pasternak. 1994. 1-aminocyclopropane-1-carboxylix acid deaminase mutants of the plant growth promoting rhizobacterium Pseudomonas putida GR12-2 donot stimulate canola root elongation. J. Microbiol. 40: 911-915.
  22. Illmer, P., Barbato, A. and F. Schinner. 1995. Solubilization of hardly soluble AIP04 with P-Solubilizing Microorganism. Soil. Biol. Biochem. 27: 260-270.
  23. Jacobsin, C. B. 1993. Isolation and characterization of ACC-deaminase from Pseudomonas putida GR12-2 M. Sc. Thesis, Department of Biology, University of Waterloo, Waterloo antario, Canada.
  24. Kaaijmakers, J. M. and D. M. Weller. 2001. Exploiting genotypic diversity of 2,4-Diacetylphloroglucinol producing Pseudomonas spp: Characterization of superior root-colonizing fluorescens strain Q8r1-96. Appl. Environ.Microbiol. 2545-2554.
  25. Kampert, M., Strzelczyk, E. and A. Pokojska. 1975. Production of Auxin by bacteria isolated from the roots of pine seedlings Pinus silvestris and from soil. Act. Microbiol. Pol. 7: 135-143.
  26. Klee, H. J., Hayford, M. B., Kretzmer, K. A., Barry, G. F. and G. M. Kishore. 1991. Control of ethylene synthesis by expression of a bacterial enzyme in transgenic tomato plants. Plant Cell. 3: 1187-1193.
  27. Kloepper, J. W., Lifshitz, R. and M. N. Schroth. 1988. Pseudomonas inoculants to benefit plant production. Plant Sci. 60-64.
  28. Kloepper, J. W., Lifshitz, R. and R. M. Zablotwicz. 1989. Free-living bacterial inocula for enhancing crop productivity. Trends Biotechnol. 7: 39-43.
  29. Leeman, M., Den ouden, F. M., Van Pelt, J. A., Dirkx, F. P. M., Steijl. H., Bakker, P. A. H. M. and B. Schippers. 1996. Iron availibility affects induction of systemic resistance to Fusarium wilt of radish by Pseudomonas fluorescens. 86: 149-155.
  30. Leong, S. and J. B. Neilands. 1982. Siderophore production by phytopathogenic microbial species. Arrch. Biochem. Biophys. 218: 351-359.
  31. Lifshtiz, R., Kloepper, J. W. E., Kozlowski, M., Simonson, C., Carlson, J., Tipping, E. M. and Zaleska. 1987. Growth promotion of Canola seedlings by a strain of Pseudomonas putida under gnotobiotic & conditions. Can. J. Microbiol. 33: 309-395.
  32. Loper, J. E. and M. N. Schroth. 1986. Influence of bacterial sources of indole-2-acetic acid on root elongation of sugar beet. Phytopathol. 76: 386-389.
  33. Maurhofer, M., Hase, C., Meuwly, P., Metraux, J. P.and G. Defago. 1994. Induction of systemic resistance of tobacco to tobacco necrosis virus by the root-colonizeing Pseudomonas fluorescens strain CHAO: influence of the gacA gene and of pyoverdine production. Phytopathol. 88: 139-146.
  34. Maurhofer, M., Reimmann, C., Schmidli-sacherer, P., Heeb, S., Haas, D. and G. Defago. 1998. Salicylic acid biosynthetic genes expressed in Pseudomonas fluorescens strain P3 improve the induction of system resistance in tobacco against tobacco necrosis virus. Phytopathol. 88: 678-684.
  35. Meyer, J. M., Azelvander, P.and C. Georges. 1992. Iron metabolism in Pseudomonas. Salicylic acid, a sidrophore of Pseudomonas fluorescens Biofactors. 4: 23-27.
  36. Meyer,D.M. 2000. Pyoverdins:Pigments siderophores and potential taxanomic markers of fluorescent pseudomonasArch. Microbiol.174;135-142.
  37. Motsara, M. R., Bhattacharyya, P. B.and B. Srivastava. 1995. Biofertilizers their description and characteristics in: Biofertilizer Technology, Marketing and usage, A sourcebook-cum-Glossary. Fertilizer Corner,1-2 Pamposh Enclave, New Dehli, 110048, India.pp: 9-18.
  38. Nagarajkumar, M., Bhaskaran, R.and R. Velazhahan. 2004. Involvement of secondary metaboloties and extracellular lytic enzymes produced by Pseudomonas fluorescens in inhibition of Rhizoctonia solani, the rice, sheath blight pathogen. Microbiol. Res. 159: 73-81.
  39. Neilands, J. B. 1981a. Iron absorption and transport in microorganisms. Annu. Rev. Nut. 1: 27-46.
  40. O,Brien, M. and R. Colwell. 1987. A Rapid Test for Chitinase Activity that uses 4-Methylumbelliferyl-N-Acetyl-β-D-Glucosaminide. Appl. Environ. Microbiol. 1718-1720.
  41. O,Sullivan, D. J. and F. O, 1992. Traits of Pseudomonas fluorescens spp. involved in suppression of plant root pathogens. Microbiol. Rev. 56: 662-676.
  42. Okon, Y. and C. A. Labandera-Gonzalez. 1994. Agronomic applications of Azospirillum. In improvong plant productivity with rhizosphere bacteria. Edited by M. H. Ryder. P. M. Stephens. and G. D. Bowen. Common wealth Scientific and Industrial Research. Organisation, Adelaide, Australia. 274-278.
  43. Patten, C. and B. R. Glick. 2002. Role of Pseudomonas putida Indole acetic Acid in Development of the Host plant Root System. Appl. Environ. Microbiol. 3795-3801.
  44. Patten, C. and B. R. Glick. 1996. Bacterial biosynthesis of indole-3-acetic acid. J. Microbiol. 42: 207-220.
  45. Patten, C. L. and B. R. Glick. 2002. Regulation of indoleacetic acid production in Pseudomonas putida GR12-2 by tryptophan and stationary-phase sigma factor Rpos. J. Microbiol. 48: 635-642.
  46. Penrose, M.and R. B. Glick. 2003. Methods for isolating and characterizing Acc deaminase-containing plant growth-promoting rhizobacteria. Physiol. Plant 118: 10-15.
  47. Raju, R. A. and M. N. Reddy. 1999. Effect of rock phosphate amended with phosphate solubilizing bacteria and farmyard manure in wetland (Oryza sativa). Ind.J. Agri. Sci. 69: 451-453.
  48. Rashid, M., Khalil, S., Ayub, N., Alam, S. and F. Latif. 2004. Organic acids productions solubilization by phosphate solubilizing microorganisms (PSM) under in vitro Pak. J. Biol. Sci. 7: 187-196.
  49. Roberts, W. K. and C. P. Selitrennikoff. 1988. plant and bacterial chitinases differ in antifungal activity. J. Gen. Microbiol. 134: 169-176.
  50. Rodriguez, H. and R. Fraga. 1999. Phosphate solubilizing bacteria and their role in plant growth promotion. Biotech.Adv. 17;319
  51. Saikiar, R., Singh, B., Kumar, R. and D. Arora. 2005. Detection of pathogenesis-related proteins-chitinase and β-1,3-glucanse in induced chickpea curr. sci. 89: 659-663.
  52. Schippers, B., Bakker, A.W. and A.H.M. Bakker. 1987. Interaction of deleterious and beneficial rhizosphere microorganism and the effect of cropping practices. Annu. Rev. Phytopathol.25:339-358
  53. Schippers, B., Bakker, A.W., Bakker, P.A.H.M., and R. Vanpeer 1990. Beneficial and deleterious effects of HCN-production pseudomonads on rhizosphere interaction. Plant Soil.129: 75-83
  54. Shin, S., Lim. Y., Lee. S., Yang, N.and J. Rhee. 2001. Cas agar diffusion assay for the measurement of siderophores in biological fluids. J. Microbiol. Methods 44: 89-95.
  55. Sperber, J. I. 1958. The incidence of apatite solubilizing organisms in the rhizosphere. Aust. J. Agr. Res. 9: 778-781.
  56. Sung, H.S., Yong,L., Shee, E. and W.Y. Nam. 2001. CAS agar diffusion assay for the measurement of siderophores in biological fluids.J.Microbiol. Methods 44:89-95
  57. Tang, W. H. 1994. Yield-increasing bacteria and biocontrol of sheath blight of rice. Organisation, Adelaide, Australia. 267-278.
  58. Venkateswarlu, B., Rao, A. V., Raina, P.and N. Ahmad. 1984. Evaluation of Phosphate solubilization by microorganisms isolated from aridisols. J. Indian. Soc. Soil Sci. 32: 273-277.
  59. Voisard, C., Keel, C., Hass, D. and G. Defago. 1989. Cyanide production by Pseudomonas fluorescens suppress black root rot of tobacco under gnotobiotic conditions. EMBO. J. 8: 351-358.