تعیین سهم کاربری های مختلف اراضی در تولید رسوب با استفاده از روش منشأیابی (مطالعه موردی: حوضه پلدشت ماکو)

نوع مقاله : مقاله پژوهشی

نویسندگان

1 استادیار دانشکده منابع طبیعی دانشگاه ارومیه

2 استاد دانشکده منابع طبیعی دانشگاه تهران

3 دانشیار پژوهشی مرکز تحقیقات حفاظت خاک و آبخیزداری

4 عضو هیئت علمی دانشکده منابع طبیعی دانشگاه ارومیه

چکیده

در تعیین منابع رسوب در حوضه ها، به دلیل‌ وجود مشکلات زیاد در کاربرد روشهای‌ سنتی، روش انگشت نگاری، ردیابی یا بعبارتی منشأیابی به‌ عنوان‌ روشی جایگزین‌ و مناسب مورد توجه ‌محققین‌ مختلف‌ قرار گرفته‌ است. در این روش‌، خصوصیات فیزیکی‌، ژئوشیمیایی‌ و آلی‌ رسوب و منابع آن برای‌ تعیین‌ منابع‌ اصلی‌ رسوب و اهمیت نسبی‌ آنها مورد استفاده قرار می گیرند. در روش یاد شده با استفاده از ترکیبی مناسب از خصوصیات جدا کننده منابع‌ رسوب، سهم این منابع در تولید رسوب تعیین می شود. در این تحقیق، سعی شده است با بهره گیری از ترکیبی مناسب از عناصر ژئوشیمیایی، رادیواکتیو، کربن آلی، نیتروژن و فسفر که قادر به جداسازی کاربری های مختلف اراضی در یکی از زیر حوضه های حوضه ایستگاه پخش سیلاب پلدشت (حوضه مرگن) واقع در شهرستان ماکو از استان آذربایجان غربی هستند سهم کاربری های یاد شده تعیین شود. بعد از برداشت 106 نمونه معرف از واحدهای سنگ شناسی و 6 نمونه رسوب از انتهای حوضه نسبت به تجزیه ردیاب های یاد شده اقدام شد. با بهره گیری از روش تحلیل تشخیص، 8 ردیاب (Cs137، OC، Pb، Be،Sn ، P، Ti و Cu) از ردیاب های مورد استفاده به عنوان ترکیب مناسب انتخاب شدند. در آخر با استفاده از ترکیب یاد شده و مدلهای چند متغیره ترکیبی سهم کاربری های کشاورزی، مرتع با فرسایش های ورقه ای و شیاری و مرتع با فرسایش های خندقی، آبراهه ای و رودخانه ای به ترتیب برابر با 34/20، 81/13 و 85/65 درصد بدست آمد و در کل کاربری مرتع تقریبا 80 درصد رسوب را تولید می کند. میانگین خطای نسبی تقریبا برابر با 12 درصد و متوسط ضریب کارایی مدل حدود 999/0 است و در ضمن نتایج با مشاهدات صحرایی همخوانی دارد. روش منشأیابی رسوب، روشی با ارزش برای کسب اطلاعات از نقش کاربری ها در تولید رسوب تشخیص داده شد.

کلیدواژه‌ها


عنوان مقاله [English]

Determining the Contributions of Land Uses to Sediment Yield Using Sediment Fingerprinting Method (Case Study: Pouldasht Basin, Mako, Iran)

نویسندگان [English]

  • S. Hakimkhani 1
  • H. Ahmadi 2
  • J. Ghayoumian 3
  • H. Nazarnaghad 4
1 Asistant professor, Natural Resources Faculty of Urmia University
2 Professor, Natural Resources Faculty of Tehran University
3 Associate professor Soil and Water Conservation Research Center
4 Member of Scientific Boord, Natural Resources Faculty of Urmiya University
چکیده [English]

Owing to many drawbacks associated with traditional methodss for identifying sediment sources, fingerprinting techniques, based on physical, chemical and organic properties of sediment and source materials, are increasingly being used as an effective alternative approach to assembling such information. In this method, a suitable composite (set) of diagnostic properties and a multivariate mixing model were employed to estimate the relative contribution of sediment sources to sediments transported to basin outlet. In this study, using suitable composites of geochemical elements, radionuclides, organic Carbon, Nitrogen and Phosphorous, capable of discriminating differerent land uses of the study basin, and a multivariate mixing model was used to determine the contributions of these land uses to sediment yield. The suitable composite fingerprints (elements) were obtained using discriminant analysis.The study basin is the main subbasin of Pouldasht water spreading station basin, Margan, located in Makoo township, Western Azarbaijan province, Iran. The suitable composite fingerprints having capability to distinguish land uses consisted of 137Cs, OC, Pb, Be, Sn, P, Ti and Cu.  Mean contributions from the three main land uses were in the order: rangelands with gully, channel and river bank erosions (65.85%), rangelands with sheet and rill erosions (13.81%), agricultural lands (20.34%). Low mean absolute errors (less than 22%) show high degree of correspondence between measured and predicted properties. High model efficiencies (greater than 0.999) confirm the goodness of fit of the mixing models. Also it is argued that fingerprinting estimates for sediment sources are consistent with field observations.

کلیدواژه‌ها [English]

  • Land uses
  • Pouldasht
  • Sediment sources fingerprinting
  • Discriminant analysis
  • Multivariate mixing model
  1. امیری، م. 1381. منشأیابی کلوئیدها (رسها) و سیلتهای ایستگاه پخش سیلاب کبودرآهنگ، مرکز تحقیقات حفاظت خاک و آبخیزداری، گزارش نهایی طرح تحقیقاتی، 101 صفحه.
  2. عطاپور، ع.، و حکیم خانی، ش. 1382. تعیین سهم زیرحوزه های حوزه آبخیز چنداب در تولید رسوب با بکارگیری کانی های رسی، مجموعه مقالات سومین همایش آبخوانداری، دستاوردها و چشم اندازهای آینده، ارومیه، 4 و 5 شهریور 1382، صفحه 74 – 82.
  3. علی احیایی، م.، و بهبهانی زاده، ع. ا. 1372. شرح روش های تجزیه شیمیایی خاک. موسسه تحقیقات خاک و آب، نشریه شماره 893.
  4. Bottrill, L.J., D.E. Walling, and G.J.L. Leeks. 2000. Using recent overbank deposits to investigate contemporary sediment sources in larger river basins. Pp. 369-387. In D. L. Foster (ed.). Tracers in Geomorphology. Wiley, Chichester.
  5. Chiang, L. H., J. Pell, and M. B. Seasholtz. 2003. Exploring process data with the use of robust outlier detection algorithms. Journal of Process Control 13, 437–449.
  6. Collins, A.L., D.E. Walling, and G.J.L. Leeks. 1997. Source type ascription for fluvial suspended sediment based on a quantitative composite fingerprinting technique. Catena 29: 1–27.
  7. Collins, A.L., and E. Walling. 2004. Documenting catchment suspended sediment sources: problems, approaches and prospects. Progress in Physical Geography 28: 159–196.
  8. Collins, A.L., D.E. Walling, and G.J.L. Leeks. 1998. Use of composite fingerprints to determine the spatial provenance of the contemporary suspended sediment load transported by rivers. Earth Surface Processes and Landforms 23: 31–52.
  9. Collins, A.L., D.E. Walling, H.M. Sichingabula, and G.J.L. Leeks. 2001. Suspended sediment source fingerprinting in a small tropical catchment and some management implications. Applied Geography 21: 387-412.
  10. Collins, A.L., and D.E. Walling. 2002. Selecting fingerprint properties for discriminating potential suspended sediment sources in river basins. Journal of Hydrology 261: 218-244.
  11. Erskine, W. , A. Mahmoudzadeh, and C. Myers. 2002. Land use effects on sediment yields and soil loss rates in small basins of Triassic sandstone near Sydney, NSW, Australia. Catena 49: 271-287.
  12. Foster, I.D.L., and J.A. Lees. 2000. Tracers in geomorphology. p 3-20. In I. D. L. Foster (ed.). Tracers in Geomorphology. Wiley, Chichester
  13. Hair, J.F., R.E. Andersen , R.L.T. atham, and W. C. Black. 1998. Multivariate Data Analysis. Prentice Hall, Upper Saddle River, New Jersey.
  14. Loughran, R.J., and B.L. Campbell. 1995. The identification of catchment sediment sources. p 189-205. In I.D.L. Foster et al. (eds.). Sediment and Water Quality in River Catchments. Wiley, Chichester.
  15. Nas, T., and B.H. Mevic. 2001. Understanding the collinearity problem in regression and discriminant analysis. Chemometrics 15: 413–426.
  16. Nash, J.E., and J.E. Sutcliffe. River flow forecasting through conceptual models. Part 1: A discussion of principles. Journal of Hydrology 10: 282-290.
  17. Oldfield, F., T.A. Rummery, R. Thompson, and D.E. Walling. 1979. Identification of suspended sediment sources by means of mineral magnetic measurements: some preliminary results. Water Resources Research 15: 211-219.
  18. Owens, P.N., D.E. Walling, and G.J.L. Leeks. 2000. Tracing fluvial suspended sediment sources in the catchment of the River Tweed, Scotland, using composite fingerprints and a numerical mixing model. p 291-308. In I.D.L. Foster (ed.) Tracers in geomorphology. Jon Wiley, Chichester.
  19. Peart, M.R., and D.E. Walling. 1988. Techniques for establishing suspended sediment sources in two drainage basins in Devon, UK: a comparative assessment. InP. Bordas, and , D.E. Walling (eds.) Sediment budgets: IAHS Publication No. 174: 269–279 (Wallingford).
  20. Reimann, C., P. Filzmoser, and R.G. Garrett. 2005. Background and threshold: critical comparison of methods of determination. Science of the Total Environment 346: 1– 16.
  21. Reimann, C., and P. Filzmoser. 2000. Normal and lognormal data distribution in geochemistry: death of a myth. Consequences for the statistical treatment of geochemical and environmental data. Environ Geol. 39/9:1001 –1014.
  22. Rowan, J.S., P. Goodwill, and S.W. Franks. 2000. Uncertainty estimation in fingerprinting suspended sediment sources. Pp. 279-290. InD.L. Foster (ed.) Tracers in geomorphology. Jon Wiley, Chichester.
  23. Russell, M.A., D.E. Walling, and R.A. Hodgkinson. 2001. Suspended sediment sources in two small lowland agricultural catchments in the UK. Journal of Hydrology 252: 1-24.
  24. Skopp, J.M. 2000. Physical properties of primary particles. Pp. B3-B24. InE. Samner (ed.) Handbook of soil science, CRC press.
  25. Summer, W., E. Klaghofer, and K. Hintersteiner. 1996. Trends in soil erosion and sediment yield in the alpine basin of the Austrian Danube. In , D.E. Walling, and B.W. Webb (eds.) Erosion and Sediment Yield: Global and Regional Perspectives. Wallingford, IAHS Publ. No. 236: 473-479.
  26. Tabachnick, B.G., and , L.S. Fidell. 1996. Using Multivariate Statistics. Harper Collins College Publishers, New York.
  27. Takken, , L. Beuselinck, J. Nachtergaele, G. Govers, J. Poesen, and G. Degraer. 1999. Spatial evaluation of a physically-based distributed erosion model (LISEM). Catena 37: 431-447.
  28. Walden J., M.C. Slattery, and T.P. Burt. 1997. Use of mineral magnetic measurements to fingerprint suspended sediment sources: approaches and techniques for data analysis. J. of Hydrology 202: 353–372.
  29. Wall, G.J., and L.P. Wilding. 1976. Mineralogy and related parameters of fluvial suspended sediments in Northwestern Ohio. Journal of Environmental Quality 5: 168-173.
  30. Wallbrink, P.J., J.M. Olley, A.S. Murray, and L.J. Olive. 1998. Determining sediment sources and transit times of suspended sediment in the Murrumbidgee River, NSW, Australia using fallout 137Cs and 210 Water Resour. Res. 34: 879–887.
  31. Walling, D.E.Linking land use, erosion and sediment yields in river basins. Hydrobiologia 410: 223-240.
  32. Walling, D.E. 2005. Tracing suspended sediment sources in catchments and river systems. Science of the Total Environment 344: 159-184.
  33. Walling, D.E., and J.C. Woodward. 1995. Tracing sources of suspended sediment in river basins: a case study of the River Culm, Devon, UK. Marine and Freshwater Research 46: 327–336.
  34. Walling, D.E., P.N. Owens, and G.J.L. Leeks. 1999. Fingerprinting suspended sediment sources in the catchment of the River Ouse, Yorkshire, UK. Hydrological Processes 13: 955–975.
  35. Walling, D.E., M.R. Peart, F. Oldfield, and R. Thompson. 1979. Suspended sediment sources identified by magnetic measurements. Nature 281: 110–113.
  36. Walling, D.E., M.A. Russell, R.A. Hodgkinson, and Y. Zhang. 2002. Fine-grained sediment budgets for two small lowland agricultural catchments in the UK. Catena 47: 323-353.
  37. Walling, D.E., and A.L. Collins. 2000. Integrated assessment of catchment sediment budgets: A technical manual. University of Exeter, 168p.
  38. Zhang, X., and D.E. Walling. 2005. Characterizing Land Surface Erosion from Cesium-137 Profiles in Lake and Reservoir Sediments. J. Environ. Qual. 34:514-523.