اجزای مختلف فسفر معدنی در برخی از خاکهای استان همدان و ارتباط آنها با فسفر قابل جذب خاک

نوع مقاله : مقاله پژوهشی

نویسندگان

1 دانشجوی سابق کارشناسی ارشد

2 دانشیار گروه خاکشناسی، دانشگاه بوعلی سینا

چکیده

تعیین شکل‌های مختلف فسفر خاک در ارزیابی وضعیت فسفر خاک مهم است. به همین منظور، مقدار و توزیع فسفر در شکل‌های مختلف معدنی و آلی در 53 نمونه خاک استان همدان بررسی شد. خاکها به صورت دنباله‌ای به منظور تعیین اجزای معدنی و آلی فسفر عصاره گیری شدند. فسفات معدنی به شش جزء شامل: دی کلسیم فسفات، اکتا کلسیم فسفات، آپاتیت، فسفات پیوند شده با آلومینیوم، فسفات پیوند شده با آهن و فسفر حبس شده درون اکسید‌های آهن تفکیک شد. نتایج این تحقیق نشان داد که دامنه اجزای مختلف فسفر دارای تغییرات نسبتاً زیادی بود. تغییرات فسفر کل خاکها در دامنه 2686 - 926 با میانگین 1533 میلی گرم در کیلو گرم خاک بود. دامنه تغییرات فسفات‌های کلسیم 1872 - 104 با میانگین 801 میلی گرم در کیلوگرم خاک بود که 5/78 درصد فسفر معدنی و 3/52 درصد از فسفر کل را تشکیل می دهد که شکل غالب فسفر خاک است. دامنه تغییرات فسفات پیوند شده با آهن 185 - 1 با میانگین 59 میلی گرم در کیلوگرم خاک که 8/5 درصد از فسفر معدنی و 8/3 درصد از فسفر کل را تشکیل می‌دهد. دامنه تغییرات فسفات پیوند شده با آلومینیوم 523 - 5 با میانگین 128 میلی گرم در کیلوگرم خاک که 5/12 درصد از فسفر معدنی و 3/8 درصد  از فسفر کل را تشکیل می‌دهد. فسفر حبس شده درون اکسیدهای آهن 371 - 0/0 با میانگین 33 میلی گرم در کیلو گرم خاک  که 2/3 درصد  از فسفر معدنی و
2/2 درصد از فسفر کل را تشکیل می‌دهد. دامنه تغییرات فسفر آلی 676 - 75 با میانگین 277  میلی  گرم در کیلو‌گرم خاک بود که 1/18 درصد از فسفر کل را تشکیل می‌دهد. نتایج مطالعات همبستگی نشان داد که فسفر قابل دسترس (فسفر عصاره گیری شده به روش اولسن) همبستگی معنی داری با دی کلسیم فسفات، اکتا کلسیم فسفات، فسفات پیوند شده با آلومینیوم، مجموع فسفات‌های کلسیم و فسفات‌های آهن و آلومینیوم داشت. این نتیجه نشان می دهد که احتمالاً این اجزاء می توانند به وسیله گیاه استفاده شوند.

کلیدواژه‌ها


عنوان مقاله [English]

Phosphorus Fractions in Selected Soils of Hamedan Province and Their Correlation with Available Phosphorus

نویسندگان [English]

  • M. Samavati 1
  • A. R. Hosseinpur 2
1 Former: Ms. Student & Associ
2 Prof. Respectively, Soil Sci. Dept. Bu-Ali Sina Univ
چکیده [English]

Determination of forms of soil phosphorus (P) is important in the evaluation of soil P status. Amount and distributions of soil organic and inorganic P fractions were examind in 53 soil samples of Hamedan province. Soils were sequentially extracted to determine organic and inorganic P fractions. Inorganic P was divided in to 6 fractions: Dicalcium phosphate (Ca2-P), Octacalcium phosphate (Ca8-P), Apatit (Ca10-P), P absorbed by Al oxides (Al-P), P absorbed by Fe oxides (Fe-P) and Occluded P ( O-P). The results showed that wide range in content of P fraction. The amount of total P (TP) ranged from 926 to 2686 mg kg-1 with an average of 1533 mg kg-1 soil. Calcium phosphate (Ca2-P + Ca8-P + Ca10-P) ranged from 104 to 1872 mg kg-1 with an average of 801 mg kg-1 soil and being comprised of 78.5 and 52.3% inorganic and total P respectively. The amount of Fe-P ranged from 1 to 185 mg kg-1 with an average of 59  mg kg-1 soil and being comprised of 5.8 and 3.8% inorganic and total P respectively. The amount of Al-P ranged from 4.6 to 523 mg kg-1 with an average of 128 mg kg-1 soil and being comprised of 12.5 and 8.3% inorganic and total P respectively. The amount of O-P ranged from 0.0 to 371 mg kg-1 with an average of 33 mg kg-1 soil and being comprised of 3.2 and 2.2% inorganic and total P respectively. The amount of organic P ranged from 75 to 676 mg kg-1 with an average of 277 mg kg-1 soil and being comprised of 18.1% total P. The results of correlation study showed that available P (P extracted by Olsen method) was significantly correlated with Ca2-P, Ca8-P, Al-P, Calcium phosphate  (Ca2-P + Ca8-P + Ca10-P) and (Aluminum, Iron oxide: Al-Fe-P), This result indicate that these fractions probably can be used by plant.

کلیدواژه‌ها [English]

  • Phosphate
  • Fractionation
  • Lime soils
  • Hamedan
  1. سالاردینی، علی اکبر. 1374. حاصلخیزی خاک. انتشارات دانشگاه تهران.
  2. محمود سلطانی، شهرام و عباس صمدی. 1382. شکل های مختلف فسفر در برخی خاکهای آهکی استان فارس و روابط آنها با ویژگیهای فیزیکو شیمیایی خاک. علوم و فنون کشاورزی و منابع طبیعی 7 (3): 119- 128
  3. ملکوتی، محمد جعفر. 1378. کشاورزی پایدار و افزایش عملکرد با بهینه سازی مصرف کود در ایران. چاپ دوم. انتشارات آموزش کشاورزی، سازمان تات، وزارت کشاورزی، کرج، ایران.
  4. Adepojn, A., Parth, T. P. F., and Maghigod, S. V. 1982. Availability and extractability of phosphorus form soils having high residual phosphorus. Soil Sci. Soc. Am. J. 46: 583-588.
  5. Agbenin, J. O., 1996. Phosphorus sorption by three savanna Alfisols as influenced by pH. Fertil Res. 44: 107 -
  6. Bakheit-Said, M., and Dakermanji, H. 1993. Phosphate adsorption and desorption by calcareous soils of Syria. Soil Sci. Plant Anal. 24: 197-210.
  7. S. C., and Jackson, M. L. 1957. Fractionation of soil phosphorus. Soil Sci. 84: 133-144.
  8. Dhillon, N. S., and Dev, G. 1988. Transformation of soil inorganic phosphorus reactions under various crop rotations. Indian Soc. Soil Sci. 39: 709-713.
  9. Elkhatib, E. A. Thabet, A. G., and El-Haris, M. K. 1991. Prediction of phosphorus fractionation in soils. Arid Soil Res. Rehab. 5: 1-8.
  10. Gee, G. W., and Bauder, J. W. 1986. Particle size analysis. In: Methods of Soil Analysis. (Ed.), Klute, A. Part 2. 383-409. Physical and mineralogical methods. ASA, Madison, WI.
  11. Hailin, Z., and J. L. 2000. Phosphorus fractionation. In: Methods of P Analysis. (Ed.), Pierzynski, G. M. 50-59. USDA / ARS. Ames, IA.
  12. Holford, I. C. R., and Mattingly, G. E. G. 1975. The high–and low-energy phosphate adsorption surfaces in calcareous soils. J. Soil Sci. 26: 407 - 417.  
  13. Jiang, B., and Gu, Y. 1989. A suggested fractionation scheme of inorganic phosphorus in calcareous soils. Fertil Res., 20: 159-165.
  14. Kou, S. 1996. Total organic phosphorus. In: Methods of Soil Analysis. (Ed.), Sparks, D. L. Part 3. 869-919. Chemical Methods. SSSA. Madison, WI.
  15. Loeppert, R. H., and D. L. Suarez. 1996. Carbonate and gypsum. In: Methods of Soil Analysis. (), Sparks, D. L. Part 3. 437-474. Chemical Methods. SSSA. Madison, WI.
  16. Lopez-Pinerio, A., and Garcia-Navarro, A. 2001. Phosphate fractions and availability in vertisols of South-Western Spain. Soil Sci. Soc. Am. J. 166: 548-556.
  17. Murphy, I. C. R., and Riley, J. P. 1962. A modified single solution method for the determination of phosphate in natural waters. Anal. Chim. Acta. 27: 31-143.
  18. Nelson, D. W., and Sommers, L. E. 1996. Total carbon, organic carbon and organic matter In: Methods of Soil Analysis. (Ed.), Sparks, D. L. Part 3. 961-1010. Chemical Methods. SSSA. Madison, WI.
  19. Nwoke, O. C., and Vanlauwe, B. 2003. Assessment of labile phosphorus fractions and adsorption characteristics in relation to soil properties of West Africa savanna soils. Agriculture, Ecosystems and Enviroment. 100: 285-294.
  20. Olsen, S. R., Cole, C. V., Watanabe, F. S., and Dean, L. A. 1954. Estimation of available phosphorus in soil by extraction with sodium bicarbonate. USDA. Circ. 939. U.S. GOV. Print Office, Washington, DC.
  21. Olsen, S. R., and Khasawneh, F. E. 1980. Use and limitation of physical-chemical criteria for assessing the state of phosphorus in soils. In: The Role of Phosphorus in Agriculture. (Eds.), Khasawneh, F. E., Sample, E. C., and Kamprath, E. J. 361-404. pub Madison, WI.
  22. Pena, F., and Torrent, J. 1990. Predicting phosphate sorption in soils of Mediterranean regions. Fertil Res. 23: 173-179.
  23. Pratt, P. F., and Gabber, M. J. 1964. Correlation of phosphorus availability by chemical tests with inorganic phosphorus fractions. Soil Sci. Soc. Am. Proc. 28: 23-26.
  24. Rhodes, J. D. 1996. Salinity: Electrical conductivity and total dissolved solids. In: Methods of Soil Analysis. (Ed.), Sparks, D. L. Part 3. 417-435. Chemical Methods. SSSA. Madison, WI.
  25. Ryan, J. Curtin, D., and Cheema, M. A. 1985. Significance of iron oxides and calcium carbonate particle size in phosphate sorption by calcareous soils. Soil Sci. Soc. Am. J. 48: 74-76.
  26. Samadi, A., and Gilkes, R. J. 1998. Forms of phosphorus in virgin and fertilized calcareous soils of Western Australia. J. Soil Res. 36: 585-601.
  27. Schmidt, J. P. Buol, S. W., and Kamprath, E. J. 1997. Soil phosphorus dynamics during 17 years of continuous cultivation: A method to estimate long–term P availability. Geoderma. 78: 59-70.
  28. Sharply, A. N., and Smith, S. J. 1985. Fractionation of inorganic phosphorus in virgin and cultivated soils . Soil Sci. Soc. Am. J. 49: 127-130.
  29. Sommers , L. E., and Nelson, D. W. 1997. Determination of total phosphorus in soils: A rapid percholoric acid digestion procedure . Soil Sci . Soc. Am. Proc. 36: 902 – 904.
  30. Sumner, M. E., and Miller, W. P. 1996. Cation exchange capacity and exchange coefficient. In: Methods of Soil Analysis. (Ed.), Sparks, D. L. Part 3. 1201-1230. Chemical Methods. SSSA. Madison, WI.
  31. , and Tomar, N. K. 1994. Correlation of soil properties on with phosphate fixation in some alkaline calcareous soils of North-Western India. Arid Soil Res. Rehab. 8: 77-91.
  32. , and Tomar, N. K. 1993. Effect of soil properties with phophate fixation in some alkaline calcareous soils. J. Indian. Soc. Soil Sci. 41: 56-61.
  33. Thomas, G. W. 1996. Soil pH and soil acidity. In: Sparks, D. L. (Ed.), Methods of Soil Analysis. Part 3. 475-490. Chemical Methods. SSSA. Madison, WI.
  34. Tyler, G. 2002. Phosphorus fractions in grassland soils. Chemosphere. 48: 343-349.
  35. Yaobing, S., and Michael, L 1999. Fractionation of phosphorus in a Mollisol amended with biosolids. Soil Sci. 63: 1174-1180.