مقایسه اثر آنیون‌های کلرید و ارتوفسفات بر سرعت (سینتیک) رهاسازی پتاسیم غیرتبادلی در تعدادی از خاک‌های آهکی

نوع مقاله : مقاله پژوهشی

نویسندگان

1 دانشجوی کارشناسی‌ارشد، دانشگاه شهرکرد

2 استاد گروه علوم ومهندسی‌خاک، دانشکده کشاورزی، دانشگاه شهرکرد

چکیده

خاک‌های مناطق خشک غنی از کانی‌های حاوی میکا هستند. این خاک‌ها دارای مقدار قابل توجهی پتاسیم بین لایه‌ای برای جذب گیاه می‌باشند. قابلیت دسترسی پتاسیم غیرتبادلی نه تنها به مقدار پتاسیم بین لایه‌ای، بلکه به سرعت رهاسازی پتاسیم از فاز معدنی خاک بستگی دارد. هدف از این پژوهش مقایسه اثر آنیون‌های ارتوفسفات و کلرید بر سرعت رهاسازی پتاسیم غیرتبادلی در 10 خاک آهکی بود. سرعت رهاسازی پتاسیم غیرتبادلی در عصاره‌گیرهای کلرید کلسیم و مونوکلسیم فسفات 01/0 مولار در مدت زمان 2017 -1 ساعت مورد مطالعه قرار گرفت. نتایج نشان داد که سرعت رهاسازی پتاسیم غیرتبادلی شامل یک مرحله سریع اولیه (تا 168 ساعت) و یک مرحله آهسته‌تر در هر دو عصاره‌گیر بود. میانگین مقدار تجمعی پتاسیم غیرتبادلی آزادشده در عصاره‌گیرهای کلرید کلسیم و مونوکلسیم فسفات 01/0 مولار پس از 168 ساعت به‌ترتیب 33/220 و 51/137 میلی‌گرم بر کیلوگرم بود. میانگین مقدار تجمعی پتاسیم غیرتبادلی آزادشده در عصاره‌گیرهای کلرید کلسیم و مونوکلسیم فسفات 01/0 مولار پس از 2017 ساعت به‌ترتیب 33/391 و 31/252 میلی‌گرم بر کیلوگرم بود. نتایج نشان داد که سرعت رهاسازی پتاسیم غیرتبادلی در عصاره‌گیر کلرید کلسیم بیشتر از مونوکلسیم فسفات بود. سرعت آزادسازی پتاسیم غیرتبادلی با معادله‌های مرتبه صفر، الویچ ساده شده، تابع توانی و انتشار پارابولیکی در عصاره‌گیرهای کلرید کلسیم و مونوکلسیم فسفات 01/0 مولار در هر دو بخش توصیف شد. نتایج این تحقیق نشان داد که، آنیون‌های همراه کاتیون می‌توانند بر سرعت آزادسازی پتاسیم غیرتبادلی در خاک‌ها موثر باشند.

کلیدواژه‌ها

موضوعات


عنوان مقاله [English]

Comparison of the Effect of Chloride and Orthophosphate Anions on the Kinetics of Non-Exchangeable Potassium Release in Some Calcareous Soils

نویسندگان [English]

  • Marzieh Barati Zanyani 1
  • Alireza Hossienpur 2
  • Mohamad Hasan Salehi 2
1 MSc Student, Shahrekord University
2 Professor, Department of Soil Science and Engineering, Faculty of Agriculture, Shahrekord University
چکیده [English]

Arid region soils are generally considered rich in micaceous K minerals. These soils have a significant amount of interlayer K for plant uptake. Availability of nonexchangeable K (NEK) is not only dependent on the quantity of interlayer K, but also on the release rate from the mineral phase in the soil. The aim of this study was to compare the effect of H2PO4- and Cl- anions on the NEK release kinetics in 10 calcareous soils. The NEK release kinetics was studied by using 0.01 M CaCl2 and 0.01 M Ca(H2PO4)2 extractors in a periods of 1-2017 h. The results showed that the NEK release included an initial fast reaction (up to 168 h) and a slow reaction in the two extractants. The mean cumulative NEK released after 168 h in 0.01 M CaCl2 and 0.01 M Ca(H2PO4)2 was 220.3 and 137.5 mg.kg-1, respectively. The mean cumulative NEK released after 2017 h in 0.01 M CaCl2 and 0.01 M Ca(H2PO4)2 was 391.3 and 252.3 mg.kg-1, respectively. Higher NEK release rate in CaCl2 than Ca(H2PO4)2 was described by the zero order, simplified Elovich, power function and parabolic diffusion models in CaCl2 and Ca(H2PO4)2 solutions and in both segments. The results of this research showed that anions associated with cation can affect the kinetics of NEK release. 

کلیدواژه‌ها [English]

  • Zero order model
  • Simplified Elovich Model
  • Power function
  • Parabolic diffusion model
  1. آزادی، ا.، باقرنژاد، م.، کریمیان، ن.، ابطحی، س.ع. 1395. عصاره‌گیری پی در پی پتاسیم غیرتبادلی و رابطه آن با ویژگی‌های خاک، کانی‌شناسی و طبقه‌بندی خاک در برخی خاک‌های آهکی استان فارس. موسسه تحقیقات خاک و آب 30 (2): 187-199.
  2. بابااحمدی، م.، اولیایی، ح.ر.، ادهمی، ا.، محنت‌کش، ع.م.، نجفی‌قیری، م. 1398. سینتیک آزادسازی پتاسیم غیرتبادلی در ارتباط با تکامل خاک و کانی‌شناسی رس در راسته‌های غالب خاک استان چهارمحال و بختیاری. شانزدهمین کنگره علوم خاک ایران. 5 تا 7 شهریور 1398. زنجان.
  3. حسین‌پور، ع.ر.، متقیان، ح.، رئیسی، ط. 1392. ارزیابی ویژگی‌های آزاد شدن پتاسیم با استفاده از محلول‌های کلریدکلسیم و اسیدسیتریک رقیق در برخی از خاک‌های آهکی. مجله علوم و فنون کشاورزی و منابع طبیعی جلد 17 (شماره 64). صفحات 221 تا 236.
  4. عبدی ص. تاج آبادی‌پور ا. و شیرانی ح. 1399. سینتیک آزادسازی پتاسیم غیرتبادلی در برخی خاک‌های تحت کشت پسته شهرستان رفسنجان. مجله علوم و فناوری پسته. 5 (9): 121-106.
  5. Al-kanani, T., Mackenzie, A.F., and Ross, G.L. 1984. Potassium status of some Quebec Soils: K release by nitric and sodium tetera-phenyl boran as related to particle size and mineralogy. Canadian Journal of Soil Science. 64:99-106.
  6. Badraoui, M., Bloom, P. R., and Delmaki, A. 1992. Mobilization of non-exchangeable K by ryegrass in five Moroccan soils with and without mica. Plant and Soil. 140: 1. 55-63.
  7. Bedrossian, S. T., and Singh, B. 2006. Kinetics of potassium release from vertosols from northern NSW. Faculty of Agriculture, food and Natural Resources, The University of Sydney, NSW.
  8. Du, Z.Y., Zhou, J.M., Wang, H.Y., Du, C.W. and Chen, X.Q. 2006. Potassium movement and transformation in an acid soil as affected by phosphorus. Soil Science Society of America Journal. 70: 6. 2057–2064.
  9. Debankur, S., Brar, B.S., and Dheri, G.S. 2019. Organic and inorganic integrated fertilization improves non-exchangeable potassium release and potassium availability in Soil. Communications in Soil Science and Plant Analysis. 50: 1. 1-10.
  10. Gee, G.W. and Bauder, J.W. 1986. Particle-size analysis. In: Klute A. (ed.) Methods of Soil Analysis: Part I-Physical and mineralogy methods. Agron. Monogr. 9. 2nd ed. ASA and SSSA, Madison, Wisconsin. pp. 383-412.
  11. Gil-Sotres, F., and Rubo, B. 1992. Kinetics and structural effects of the extraction of nonexchangeable potassium from the clay fraction of soil of Galicia (N. W. Spain). Communications in Soil Science and Plant Analysis. 23: 143-156.
  12. Ghosh, B.N., and Singh, R.D. 2001. Potassium release characteristics of some soils of Uttra Pradesh hills varying in altitude and their relationships with forms of soil K and clay mineralogy. Geoderma. 104: 135-144.
  13. Havlin, J.L., Westfall, D.G., and Olsen, S.R. 1985. Mathermatical model for potassium release kinetics in calcareous soils. Soil Science Society of America Journal. 49: 371-376.
  14. Hosseinpour, A.R., and Motaghian, H. 2013. Application of Kinetic Models in Describing Soil Potassium Release Characteristics and Their Correlations with Potassium Extracted by Chemical Methods. Pedosphere 23: 4. 482–492.
  15. Jalali, M. 2005. Release kinetics of nonexchangeable potassium in calcareous soils. Communications in Soil Science and Plant Analysis. 36: 1903-1917.
  16. Jalali, M. 2006. Kinetics of non-exchangeable potassium release and availability in some calcareous soils of western Iran. Geoderma. 135: 63-71.
  17. Jalali, M. 2007. Spatial variability in potassium release among calcareous soils of western Iran. Geoderma. 140: 42-51.
  18. Jalali, M. and Varasteh Khanlari, Z. 2014. Kinetics of Potassium Release from Calcareous Soils Under Different Land Use. Arid Land Res. Manage. 28:1-13.
  19. Knudsen, D., Peterson, G.A., and Pratt, P.F. 1982. Lithium, Sodium and Potassium. In: Page, A.L. Miller R.H. and Keeney D.R. (eds.) Methods of Soil Analysis, Part 2: Chemical and Microbiological Properties. (2nd ed.). American Society of Agronomy and Soil Science Society of America, Madison, Wisconsin. pp. 225-246.
  20. Lopez, P., and Navarro, A.G. 1997. Potassium release kinetics and availability in unfertilized Vertisols of Southwestern Spain. Soil Science. 162:912-918.
  21. Loeppert, R.H., and Suarez, D.L. 1996. Carbonate and gypsum. In: Sparks D.L. (ed.) Chemocal Methods of Soil Analysis Soil Science Society of America Madison. pp. 437-447.
  22. Lu, X.N., Zhang, M.H., and Xu, J.M. 2002. Potassium release rates from ultisols and their application. Plant and Soil. 246: 23-29.
  23. Martin, H.W., and Sparks, D.L. 1983. Kinetics of non-exchangeable potassium release from two coastal plain soils. Soil Science Society of America Journal. 47: 883-887.
  24. Martin, W.H., and Sparks, D.L. 1985. The behavior of non-exchangeable K in soils. Communication in Soil Science and Plant Analysis. 16: 133-162.
  25. Mustscher, H. 1995. Measurement and assessment of soil potassium. International potash institute Research Topics Nomber 4.
  26. Molavi, R., Baghernejad M., Ghasemi-Fasaei R. and Zarei M. 2020. Release characteristics of potassium from native reserves of some calcareous soils of Iran and their relationship with yield and potassium uptake by ryegrass. Soil Research, 58: 8. 770-778.
  27. Najafi, M., Abtahi, A., Karimian, A., Owliaie, H.R., and Khormali, F. 2011. Kinetics of non-exchangeable potassium release as a function of clay mineralogy and soil taxonomy in calcareous soils of southern Iran. Archives of Agronomy and Soil Science. 57: 4. 343-363.
  28. Nelson, D.W., and Sommers, L.E. 1996. Carbon, organic carbon, and organic matter. In: Sparks D.L. (ed) Methods of Soil Analysis. SSSA, Madison. pp. 961-1010.
  29. Rhoades, J.D. 1996. Salinity: electrical conductivity and total dissolved solids. In: Sparks D.L. (ed) Methods of Soil Analysis. SSSA, Madison. pp. 417-435.
  30. Rahmatullah, M. S. Z. and Ali, A. 1998. Potassium release from soil clays by diammonium phosphate, ammonium bicarbonate and ammonium chloride. J. Agron. Crop Sci. 180: 33–37.
  31. Rowell, D L. 2014. Soil science: methods & applications, Routledge
  32. Song, S., and Huang, P. 1988. Dynamics of Potassium Release from Potassium-bearing Minerals as Influenced by Oxalic and Citric Acids, Soil Science Society of America Journal. 52: 383-390.
  33. Sparks, D.L., and Jardin, P.M. 1984. Comparison of kinetics equations to describe potassium calcium exchange inpure and in mixed systems. Soil Science. 138: 115-122.
  34. Sadusky, M. C., Sparks, D. L., Noll, M. R. and Hendricks, G. J. (1987). Kinetics and mechanism of potassium release from sandy middle Atlantic coastal plain soils. Soil Science Society of America Journal, 51, 1460-1465.
  35. Sumner, M.E., and Miller, W.P . 1996. Cation exchange capacity and exchange coefficients. In D. L. Sparks et al. (ed.) Methods of Soil Analysis Part III, Soil Science Society of America. Madison, Wisconsin. 1201-1229.
  36. Serrano S., Garrido F., Campbell C.G. and Garcia-Gonzalez M.T. 2005. Competitive sorption of cadmium and lead in acid soils of central Spain. Geoderma, 124:91-104.
  37. Schindler, P.W. and Sposito G. 1991. Surface Complexation at (Hydr)Oxide Surfaces. Interactions at the Soil Colloid -Soil Solution Interface. 115-145.
  38. Thomas, G.W. 1982. Exchangeable cations. In: A.L. Page et al. (eds.) Methods of Soil Analysis: chemical and microbiologi cal properties. Agron. Monogr. 9. Part 2. 2nd ed. ASA and SSSA, Madison, Wisconsin. pp.159-166.
  39. Wang, L, Ruiz-Agudo, E n, Putnis, C V, Menneken, M and Putnis, A. 2011. Kinetics of calcium phosphate nucleation and growth on calcite: implications for predicting the fate of dissolved phosphate species in alkaline soils. Environmental science & Technology. 46 (2): 834--842.
  40. Zareian, Gh.R., Hadi Farpoor, M., Hejazi-Mehrizi, M., and Jafari, A. 2018. Kinetics of Non-exchangeable Potassium Release in Selected Soil Orders of Southern Iran. Soil and Water Research. 13(4):200-207.
  41. Zhou, J.M., Huang, P.M., 1995. Kinetics of monoammonium phosphateinduce potassium release from selected soils. Canadian journal Soil Science. 75: 197–203.
  42. Zhou, J.M., Huang, P.M., 2007. Kinetics of potassium release from illite as influenced by different phosphates. Geoderma. 138: 221–228.