بررسی امکان استفاده از خاک فسفات غنی شده برای تأمین فسفر در باغات چای

نوع مقاله : مقاله پژوهشی

نویسندگان

1 عضو هیأت علمی موسسه تحقیقات خاک و آب، سازمان تحقیقات، آموزش و ترویج کشاورزی، کرج. ایران

2 استادیار دانشگاه آزاد واحد لاهیجان، گروه زراعت و اصلاح نباتات

چکیده

استفاده مستقیم از خاک فسفات به عنوان یکی از جایگزین­های سوپر­فسفات مطرح است ولی در خاکهای آهکی به علت حلالیت ناچیز خاک فسفات چندان مؤثر و ثمربخش نیست، ولی کاربرد آن در خاک­های اسیدی اثربخشی بیشتری دارد. با این وجود، کاربرد آن در خاک­های اسیدی شمال کشور کمتر مورد توجه بوده­است. پژوهش حاضر با هدف بررسی امکان جایگزینی خاک فسفات با کودهای شیمیایی فسفری در قالب طرح بلوک کامل تصادفی در باغ چند ساله چای واقع در لاهیجان انجام شد. تیمارها شامل: 1- شاهد (بدون کود)، 2- کود سوپرفسفات تریپل (براساس آزمون خاک)، 3- خاک فسفات (به میزانی که به اندازه کود سوپر فسفات فسفر وارد خاک نماید)، 4- کمپوست به میزان 10 تن در هکتار، 5- خاک فسفات+ باکتری­های حل‌کننده فسفات 6- خاک فسفات+ قارچ­های حل‌کننده فسفات(گلوموس) 7- خاک فسفات+ کمپوست(10 تن در هکتار) 8-خاک فسفات+ کمپوست (10 تن در هکتار)+ باکتری­های حل‌کننده فسفات(باکتری سودوموناس) 9- خاک فسفات+ قارچ­های حل‌کننده فسفات+ کمپوست (10 تن در هکتار). صفات عملکرد برگ سبز چای (غنچه و دو برگ پایینی)، غلظت فسفر، منگنز، روی، آهن، مس در برگ و خاک و نیز اسیدیته و شوری خاک اندازهگیری شد. تیمار باکتری+ قارچ + کمپوست + خاک فسفات بعنوان بهترین تیمار افزایش دهنده شاخص­های اندازه­گیری شده در مقایسه با شاهد تشخیص داده شد و این تیمار با تیمارهای کاربرد باکتریشان نداد. تیمار مذکور فسفر خاک، فسفر برگ، عملکرد، آهن برگ و روی خاک را در مقایسه با شاهد به ترتیب 35، 6، 109، 6 و 12 درصد افزایش داد. مصرف خاک فسفات به تنهایی در مقایسه با شاهد فسفر قابل جذب خاک را بطور معنی­دار افزایش داد ولی بیشترین مقدار فسفر خاک با کاربرد توامان خاک فسفات همراه با کمپوست و میکروارگانیسم­ها (کودزیستی،: باکتری و قارچ) حاصل شد.  از لحاظ عملکرد برگ سبز چای دو تیمار سوپر فسفات و خاک فسفات نسبت به شاهد افزایش معنی­دار نشان دادند ولی هر دو در یک سطح آماری قرار داشتند، از نظر فسفر قابل جذب خاک و فسفر برگ چای، کود سوپر فسفات تریپل برتر از شاهد و خاک فسفات تنها، ظاهر شد. ولی همچنان بهترین تیمار از لحاظ سه شاخص یادشده مصرف توامان خاک فسفات، کمپوست و میکروارگانیسم­ها بود.
 
 
 
 
 
 

کلیدواژه‌ها

موضوعات


عنوان مقاله [English]

Investigating the Possibility of Using Enriched Rock Phosphate to Supply Phosphorus in Tea Plantations

نویسندگان [English]

  • Hossein Besharati 1
  • hamidreza doroudian 2
  • karim shahbazi 1
1 Scientific board, Soil and Water Research Institute, Agricultural Research, Education and Extension Organization, Karaj. Iran
2 Assistant Professor, Azad University, Lahijan Branch, Department of Agronomy and Plant Breeding
چکیده [English]

Direct use of rock phosphate is considered as one of the alternatives to superphosphate, however, its use in acidic soils in the north of Iran has received less attention.This experiment was conducted as randomized complete block design. The treatments included: 1) control, 2) triple superphosphate (Tsp) fertilizer (based on soil test), 3) rock phosphate (to the extent that P addition was the same as Tsp), 4) compost at the rate of 10 tons per hectare, 5) rock phosphate+phosphate solubilizing fungi, 6) rock phosphate+phosphate dissolving fungi (Glomos), 7) rock phosphate + 10 tons per hectare compost, 8) rock phosphate + compost + phosphate solubilizing fungi (Pseudomonas), 9) rock phosphate+phosphate solubilizing fungi +compost. The results indicated the possibility of substituing rock phosphate for Tsp  in acidic soils of tea plantations, and organic matter plays an important role in better dissolution of rock phosphate by microorganisms in acidic soils. Application of bacteria, fungi, and compost treatments along with rock phosphate significantly increased the yield of green tea leaves as well as soil available P, compared to the control. Also, the concentration of trace elements in treatments containing compost showed a significant increase. The use of rock phosphate alone significantly increased the soil available P compared to the control, but the highest amount of soil P was obtained by simultaneous application of rock phosphate with compost and microorganisms (biofertilizers).

کلیدواژه‌ها [English]

  • Phosphate solubilizing bacteria
  • Rock Phosphate
  • Phosphate solubilizing fungi
  • Mycorrhiza
  • Tea garden
  1. احمدی، ک.، ح.ر. عبادزاده، ف. حاتمی، ر.حسین پور و ح.عبداشاه. 1399. آمارنامه کشاورزیسال 1399 جلد 3 محصولات باغی. وزارت جهادکشاورزی، معاونت برنامه ریزی و اقتصادی، مرکز فناوری اطلاعات و ارتباطات. شابک 8-097-467-964-978 تهران. ایران.
  2. امامی، عاکفه. 1375. روش‌های تجزیه گیاه (جلد اول). مؤسسه تحقیقات خاک و آب. نشریه شماره 982. ایران.
  3. تهرانی، م.م.، مشیری، ف.، شهبازی، ک.، معبودی، ن.، طباخیان، ش.، و رمضانی موفق، س. 1394. افزایش کارایی خاک فسفات بومی به منظور کاهش واردات کودهای فسفاتی. گزارش نهایی پروژه تحقیقاتی، شماره مصوب 9008-10-10-01. موسسه تحقیقات خاک و آب.
  4. شهبازی، ک. و ح. بشارتی. 1392. بررسی اجمالی وضعیت حاصلخیزی خاک­های کشاورزی ایران . شریه مدیریت اراضی.جلد 1.شماره 1. 1-15.
  5. Besharati, H. 2017. Effects of sulfur application and Thiobacillus inoculation on soil nutrient availability, wheat yield and plant nutrient concentration in calcareous soils with different calcium carbonate content. Journal of Plant Nutrition, 40(3):  447-456.
  6. Besharati, H., N. Aliasgharzad, K. Khavazi and H. Asadi Rahmani. 2018. Soil biology and biotechnology. In: The soils of Iran. M. H. Roozitalab, H. Siadat, A. Farshad (eds.) pp: 189-212. Springer
  7. Bouyoucos, G.J. 1928. The hydrometer method for studying soils. Soil Science, 25(5): 365-370.
  8. Bremmer, J.M., and Mulvaney, C.S. 1996. Nitrogen-Total. Methods of Soil Analysis, Part 2. Soil Science Society of America Book Series, 5: 1085–1121.
  9. Chapman HD and Pratt PF, 1962. Methods of Analysis for Soils, Plants and Waters. Soil Science 93: 60-62.
  10. Helmke, P.A., and Sparks, D.L. 1996. Lithium, sodium, potassium, rubidium, and cesium. Methods of Soil Analysis Part 3-Chemical Methods. Soil Science Society of America Journal, 3: 551–574.
  11. Kucey, R.M.N. and Leggett, M.E. 1989. Increased yields and phosphorus uptake by Westar canola (Brassica napus L.) inoculated with a phosphate-solubilizing isolate of Penicillium bilaji. Canadian Journal of Soil Science, 69, 425-432. http://dx.doi.org/10.4141/cjss89-042
  12. Nelson, D.W., and Sommers, L.E. 1996. Total Carbon, Organic Carbon, and Organic Matter. In: Sparks D.L. (Ed.), Methods of Soil Analysis -Part 3. Chemical Methoods-SSSA book. Series No. 5. Soil Science Society of America and American Society of Agronomy, Madison, pp 961-1010.
  13. Olsen, S.R. 1954. Estimation of available phosphorus in soils by extraction with sodium bicarbonate. United States Department of Agriculture Circular, 939: 1-19.
  14. Salimpour, S. , Khavazi, H. Nadian, H. Besharati and M. Miransari. 2010. Enhancing phosphorous availability to canola (Brassica napus L.) using P solubilizing and sulfur oxidizing bacteria. Australian Journal of Crop Science4(5): 20-35.
  15. Thomas, G. W. 1996. Soil pH and Soil Acidity. In: Sparks, D.L. et. al., ,(Ed.). Methods of Soil Analysis: Part 3 Chemical Methods, 5.3.  Soil Science Society of America, and American Society of Agronomy, Inc.Madison, pp : 475-490.
  16. Tian, G. and Kolawole, G. O.2004 'Comparison of various plant residues as phosphate rockamendment on Savanna soils of west Africa, Journal of Plant Nutrition, 27: (4), 571 — 583. Chapman, H.D. 1965. Cation-exchange capacity. In: C.A. Black (ed.). Methods of soil analysis - Chemical and microbiological properties. Agronomy 9:891-901.
  17. Westerm RL. 1990. Soil testing and plant analysis. Soil Science Society of American. Madison Wisconisn, United States of America.
  18. Yadav, K  &    Singh  1991.  Phosphorous  solubilization  by  microbial  isolate  from  cacifluvent. Journal of Indian Society of Soil Science, 39: 89-93.
  19. Yahya, A.I., Al-Azawi, S.K. 1989. Occurrence of phosphate-solubilizing bacteria in some Iraqi soils. Plant and Soil117, 135–141.
  20. Zoysa A.K.N., P. Loganathan, M.J. Hedley 1998. Phosphate rock dissolution and transformation in the rhizosphere of tea (Camellia sinensis) compared with other plant species: European Journal of Soil Science 49, (3): 477–486.
  21. Zoysa, A.K.N., P. Loganathan and M.J. Hedley, 1999. Phosphorus utilisation efficiency and depletion of phosphate fractions in the rhizosphere of three tea (Camellia sinensis) clones Nutrient Cycling in Agroecosystems 53: 189-201.
  22. worldbank.org.
  23. Zoysa A.K.N., P. Loganathan, M.J. Hedley. 2001. Comparison of the agronomic effectiveness of a phosphate rock and triple superphosphate as phosphate fertilisers for tea (Camellia sinensis) on a strongly acidic Ultisol. Nutrient Cycling in Agroecosystems. 59: 2, pp 95-105. https://teacash.ir
  24. Hinsinger P., 2001. Bioavailability of soil inorganic P in the rhizosphere as affected by root-induced chemical changes: a review. Plant and Soil: 237, Issue 2, pp 173-195.
  25. Grover L M , J C KnowlesG J P FlemingJ E Barralet. 2003. In vitro ageing of brushite calcium phosphate cement. Biomaterials. 24(23):4133-41.  doi: 10.1016/s0142-9612(03)00293-x.
  26. Kpomblekou-A K, Tabatabai MA. 1994. Effect of organic acids on release of phosphorus from phosphate rocks. Soil Sci.;158:442-53.
  27. Bhattacharyya, P., A. Chakraborty, B. Bhattacharya and K. Chakrabarti, 2003. Evaluation of MSW compost as a component of integrated nutrient management in wetland rice. Compost Sci. Util. 11 (4), 343-350.
  28. Warman P.R. and Munroe, M.D. 2000. Analysis of total inositol phosphates in municipal solid waste compost-treated soils by two extraction methods. Biol Fertil Soils 32:89–93.
  29. Banik S. and B. K. Dey, 1982, Available phosphate content of an alluvial soil is influenced by inoculation of some isolated phosphate-solubilizing microorganisms. Plant Soil. 69: 353–364.
  30. Taha, S.M., S.A.Z. Mahmoud, A. Halim El Damaty and A.M. Abd. El. Hafez. 1969. Activity of phosphate dissolcing bacteria in egyption soils. Plant and Soil XXXI, No.1.
  31. Crecchio, Antonio Gelsomino, Roberto Ambrosoli,,Pacifico Ruggiero. 2004. Functional and molecular responses of soil microbial communities under differing soil management practices. Soil Biology and Biochemistry 36:1873-1883.
  32. Iglesias-Jimenez and C. E. Alvarez. 1993. Apparent availability of nitrogen in composted municipal refuse. Biology and Fertility of Soilsvolume 16, pages313–318.
  33. Zhang M., Heaney D., Henriquez B., Solberg E., Bittner E. 2006. A fouryear study on influence of biosolids/MSW cocompost application in less productive soils in Alberta: nutrient dynamics, Compost Sci. Util. 14, 68–80.